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Abstract 

In computer vision systems Semantic segmentation is a challenging task. Many methods have been created to tackle this problem 

ranging from autonomous vehicles, interaction between human and computer, to robotics, research on medical science, 

agriculture and so on. Many of these methods have been built using the deep learning network that has shown a salient 

performance. For this reason, we  propose to survey these methods by, first categorizing them into ten different classes according to 

the common concepts underlying their architectures. Second, by providing an overview of the publicly available datasets on which 

they have been assessed. In addition, we present the common evaluation matrix used to measure their accuracy. Moreover, we 

focus on some of the methods and look closely at their architectures in order to find out how they have achieved their reported 

performances. Finally, we conclude by discussing some of the open problems and their possible solutions. 
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1. Introduction 

The recent works in deep learning dealing with semantic 

segmentation have been significantly improved by using neural 

networks. Neural networks have a long history since the 1940s 

and they did not get much of the attention of researchers until 

1990s [1]. Neutral networks made huge progress because of 

large amount of data is available thanks to the rise of digital 

cameras, cell phone cameras, and the computing power, which 

is getting faster as GPUs become general purpose computing 

tools. 

Deep neural networks are very effective in semantic seg- 

mentation, that is labeling each region or pixel with a class of 

objects/non-objects. Semantic segmentation plays an important 

role in image understanding and essential for image analysis 

tasks. It has several applications in computer vision & artificial 

intelligence autonomous driving [2, 3], robot navigation [4], 

industrial inspection [5]; remote sensing [6]; In cognitive and 

computational sciences saliency object detection [7, 8]; In 

Agriculture sciences [9]; Fashion categorizing clothing items 

[10]; In medical sciences medical imaging analysis [11] etc. 

The earlier approaches used for semantic segmentation were 

textonforest [12], random-forest based classifiers [13], whereas 

deep learning techniques allowed precise and much faster seg- 

mentation [14]. 

Semantic segmentation requires image classification, object 

detection, and boundary localization. Figure 1 is an example of 

object detection, involving bounding box, and classification of each 

pixel into different classes (car, road, sky, vegetation, terrain etc). 
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Figure 1: Object Detection / Bounding Box and Semantic Segmentation 

 

 

Deep learning is a new field division of machine 

learning, which is rapidly growing with the pace making 

it very difficult to stay up to date, even to keep track of 

the works dealing with semantic segmentation. These 

works cover the development of new methods, 

improvements of existing methods, and their de- 

ployment in new application domains. This is the reason 

that there is a lack of state-of-the-art reviews. 

Some surveys and review papers have addressed 

advancements and innovations on the subject of deep 

learning and semantic segmentation. A Survey by Zhu et 

al. [15] covering a wide range of the papers and areas of 

semantic segmentation top- ics including, interactive methods, 

recent development in the super-pixel, object proposals, 

semantic image parsing, image co-segmentation, semi & 

weakly supervised, and fully super- vised image segmentation. 

Martin Thoma [16] presented a tax- onomy of segmentation 

algorithms and overview of completely automatic, passive, 

semantic segmentation algorithms. Niemei- jer et al. [17] 

presented a review of neural network based se- mantic 

segmentation for scene understanding in the context of the 

autonomous driving. Guo et al. [18] provided a review of 

semantic segmentation approaches, i.e., region-based, FCN- 

based and weakly supervised approaches. They have summa- 

rized the strengths, weaknesses and major challenges in image 

semantic segmentation. Geng et al.   [19] presented a survey 

of recent progress in semantic segmentation with CNN‟s, and 

newly developed strategies that have achieved promising re- 

sults on the Pascal VOC 2012 semantic segmentation challenge. 
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Detail review provided by Garcia et al.   [20] on deep learn- 

ing methods for semantic segmentation with their contributions 

and significance in the field. An extensive review presented by 

Hongshan et al. [21], categorized different methods based on 

hand engineered features, learned features, and weakly super- 

vised learning. 

The main contributions of this paper are as follows: 

1. The existing methods have been categorized into ten dif- 

ferent classes according to the common concept that un- 

derlays their architectures. This categorization gives a 

complete summary of the methods both inspire and di- 

verge from one another. 

2. More than 100 different models and 33 datasets (publicly 

available) have been covered, stating the corpus, original 

architecture, testing benchmark of each model, and the 

attributes of each dataset. Furthermore, we provide the 

best performing method yielded top classification accu- 

racy on each dataset until date. 

3. An emphasis on how these methods achieved their ac- 

complishments is given by analyzing their structural de- 

sign and their performance on the assessed datasets. 

4. Finally, some of the open problems and possible solu- 

tions have been discussed. 

In this survey, all the models are carefully chosen and put 

into relation to each other according to their architectural design 

and contribution to the field. This includes improving accu- 

racy, reducing computation complexity, developing new meth- 

ods, and enhancing existing ones. All the results reported in 

this paper are taken from the original papers. We have tried to 

cover most of the works in deep neural networks for seman- 

tic segmentation. This survey will help the new researchers to 

strengthen their understanding of these remarkable works. 

 
2. Deep Learning Architectures for Semantic Segmentation 

This section provides the details of all the reviewed seman- 

tic segmentation methods. We have categorized these methods 

into ten (10) classes, presented in the tabular form stating each 

method, its main idea, its architecture origin, testing bench- 

marks, publication date, and code availability (Table .13 pro- 

vides links of available source codes). 

The recent success of deep convolutional neural networks 

(CNNs) has enabled outstanding progress in semantic segmen- 

tation. The first successful application of convolutional neural 

network was developed by LeCun [22]. They introduced an 

architecture named LeNet5 to read zip codes, digits, and ex- 

tract features at multiple locations in the image. Later, Alex 

Krizhevsky released a large deep convolutional neural network 

(AlexNet) [23], which is regarded as one of the most influential 

publications in the field. AlexNet is a deeper and wider version 

of the LeNet, used to learn complex objects and object hierar- 

chies. Zeiler and Fergus [24] presented the ZFNet, which is 

a fine-tuning of the AlexNet structure. They proposed a tech- 

nique of visualizing feature maps at any layer in the network 

model. This technique uses a multi-layered deconvolutional 
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network to project the feature activations back to the input 

pixel space. Lin et al. [25] proposed a Network-In-

Network model based on micro neural networks, which 

is a multilayer percep- tron (MLP) [26], consisting of 

multiple fully connected layers with nonlinear activation 

functions. Szegedy et al. [27] pro- posed an efficient 

deep neural network called GoogleNet. They introduced 

an inception module as shown in Figure 2, which is a 

combination of 1 1, 3 3, and 5 5 convolutional filters and 

a pooling layer. It reduced the number of features and 

operations at each layer thus saving the time and 

computational cost. 

 

Figure 2: Inception module 

 
The same authors proposed in [28] an algorithm 

refereed as BN-Inception for constructing, training, and 

performing infer- ence with Batch Normalization method. 

Szegedy et al. [29] fur- ther introduced two new modules 

Inception V2 and Inception V3 with some major 

modifications (i.e., factorizing convolu- tions and using 

grid reduction technique) of their previous mod- ule. 

Later, Szegedy et al. [30] replaced the filter 

concatenation stage of the Inception architecture with 

residual connections in order to increase efficiency and 

performance. They proposed Inception-ResNet-v1, 

Inception-ResNet-v2 and a pure Incep- tion variant 

called Inception V4. Chollet et al. [31] proposed a 

module named Xception, meaning extreme inception. 

They re- placed the inception modules with depth wise 

separable convo- lutions proposed in [32]. Table 1 shows 

GoogLeNet Modules. 

 
 Feature Encoder Based Methods: 

VGG [33] and ResNet [34] methods are the most 

dominant approaches for feature extraction. In this 

category, we review these methods and their invariants 

presented in Table 2. The idea behind the concept is to 

extract feature maps based on stacked convolution 

layers, ReLu layers and pooling layers. 

 

 VGG Network: 

VGG network [33] introduced by Oxford‟s 

renowned Vi- sual Geometry Group. Unlike LeNet [22] 

and AlexNet [23], VGGNet uses multiple 3 3 

convolution in the sequence that can match the effect of 

larger receptive fields, e.g. 5 5 and 

7 7. However, it required a large number of parameters 

and learning power due to having large classifiers. 

Figure 3 shows a VGGNet with 16 convolutional layers. 

 

 Residual Learning Frameworks 

Residual learning frameworks include methods 

which use residual block [34] as a fundamental building 

block in their ar- chitecture. 
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Table 1: GoogLeNet Modules 

 
Model Corpus Original Architecture    Testing Benchmark Published on Code Available 

 
 Inception module:   September 17,  

 Bottleneck [27] NIN ImageNet 2014 YES 

 Batch Normalization Inception ImageNet March 2, 2015 YES 
 Modified BN-Inception [28]     

 Inception V2, V3 [29] BN-Inception ImageNet December 11, 2015 YES 
 Inception V4 and     

 Inception-ResNet-v1, 2 Inception V3  August 23,  

GoogLeNet Combining the Inception  ImageNet 2016 YES 
 architecture with Residual ResNet    

 connections [30]     

 Xception [31] Inception V3 ImageNet   

 Depthwise Separable  JFT (Google‟s) April 4, 2017 YES 
 Convolutions [32] ResNet FastEval14k   

 
 

 

Figure 3: VGG-16 Layer Structure 

 

Residual Network - ResNet [34] is the most popular and 

widely used neural network for semantic segmentation. It is 

hard to train a deep neural network with large numbers of lay- 

ers, the more increase in depth, its performance gets saturated or 

even starts degrading due to vanishing gradient problem. Sev- 

eral solutions were proposed in [35, 36, 37] but none of them 

seemed to really tackle the problem. He et al. [34] resolved 

the vanishing gradient problem in an effective way by intro- 

ducing identity shortcut connection (i.e., skipping one or more 

layers) as shown in Figure 4. They proposed a pre-activation 

variant residual block in which the gradients can easily flow 

through the shortcut connection without obstruction during the 

back pass of back propagation. 

Several architectures are based on ResNet, its variants and 

interpretations. Paszke et al. [45] presented an encoder/decoder 

scheme network called efficient neural network (ENet). This 

network is similar to the ResNet bottleneck approach, created 

specifically for tasks requiring low latency operation, i.e., mo- 

bile phones or battery-powered devices. In [49, 50], the authors 

proposed counter-intuitive way of training a deep network by 

randomly dropping its layers and using the full network in test- 

ing time. Wu et al. [38] presented a neural network called 

ResNet-38, in which they added and removed layers in residual 

networks at train/test time. They analyzed the effective depths 

of residual units, and point out that ResNet behaves as linear 

ensembles of shallow networks. Pohlen et al. [44] proposed a 

full-resolution residual network (FRRN) with strong localiza- 

tion and recognition performance for semantic segmentation. 

FRRN exhibits the same superior training properties as ResNet, 

having two processing streams: residual and pooling. Residual 

 

 

 

 

 

 
Figure 4: Residual Learning: A building block 

 

 
stream carries information at the full image resolution and en- ables 

precise adherence to segment boundaries. The pooling stream 

undergoes a sequence of pooling operations to obtain robust features 

for recognition. The two streams are coupled at the full image 

resolution using residuals in order to realize strong recognition and 

localization performance for semantic segmentation. Xie et al. [41] 

proposed a modified ResNet called ResNeXt, following the split-

transform-merge strategy as inception modules [27, 30], except the 

outputs of different paths are concatenated and all paths share the 

same topology. Thus, this allows the design to extend to any large 

number of transformations. Adapting the idea of ResNet-50 [34], an 

ar- chitecture called Adaptive network or AdapNet is proposed by 

Valada et al. [40]. They introduced an additional convolution with a 

kernel size of 3 3 before the first convolution layer in ResNet, which 

enables the network to learn more high resolu- tion features in less 

time. They also proposed the convoluted mixture of deep experts 

(CMoDE) fusion scheme for learn- ing robust kernels from 

complementary modalities and spectra. The proposed model 

adaptively weighs class-specific features based on the scene 

condition. Inspired by ENet, Romera et al. 

[46] proposed an efficient residual factorized network ERFNet 

for real-time semantic segmentation. ERFNet proposes a non- 
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Table 2: Feature Encoder based Methods 

 

Category Strategy / Structure 
 

Corpus 
Original 

Architecture 

Testing 

Benchmark 
Published on Code Available 

  

 
Visual Geometry 

Group Network 
(VGGNet) [33] 

Convolutional Networks 

(ConvNets) Used much 

smaller 3 × 3 filters in 

each convolutional 

layers which match the 

effect of larger receptive 

fields e.g. 5 × 5 and 7 × 7. 

 

 
AlexNet 

 

 
ImageNet, 

PASCAL VOC 

 

 
April 10, 2015 

 

 
YES 

  

R 

E 

S 

I 

D 

I 

U 

A 

L 

 

. 

 

 

 

 
L 

E 

A 

R 

N 

I 

N 

G 

 
Residual Network 

(ResNet) [34] 

 
Bottleneck Approach 

Shortcut Connections 

are added (MLPs-Multi 

Layer Perceptions) 

 

VGG 

Cityscapes, 

CIFAR-10, 

COCO, 

PASCAL VOC 

 

December 10, 2015 

 

YES 

  

ResNet-38 [38] 

 (Shallow Network) 

ReNet for Image 

classification FCN for 

semantic image 

segmentation. 

 
ResNet + 

FCN 

Cityscapes, 

ADE20K, 

PASCAL VOC 

 

November 30, 2016 

 

YES 

  

Fully Convolutional 

Dense ResNet 

(FC-DRN) [39] 

 Combining the strength 

of FC-ResNet: gradient 

flow and iterative 

refinement. 

FC-DenseNet: Multi-Scale 

feature representation 

and deep supervision). 

 

 
ResNet 

 

 
CamVid 

 

 
April 30, 2018 

 

 
- 

Feature 

Encoder 

Adaptive Network 

(AdapNet) [40] 

 Convoluted Mixture 

of Deep Experts 

(CMoDE) fusion scheme. 

ResNet 

Cityscapes, 

Synthia, 

Freiburg forest 

May 29, 2017 - 

  
ResNeXt [41] 

 Hyper-parameter 

”Cardinality” 

a new way to adjust 

models capacity. 

 
ResNet 

ImageNet, 

COCO, 

CIFAR 

 
April 11, 2017 

 
YES 

  

INPLACE-ABN [42] 

 In-Place Activated Batch 

Normalization module: To 

reduce the training 

memory footprint of 

residual networks. 

 

DeepLabV3 

COCO-Stuff, 

Cityscapes 

Mapillary Vistas 

 

December 11, 2017 

 

YES 

 

Dynamic-Structured 

Semantic Propagation 

Network 

(DSSPN) [43] 

 DSSPN explicitly 

constructs a semantic 

neuron graph network 

by incorporating the 

semantic concept 

hierarchy. 

 

 
- 

ADE20K, 

COCO-Stuff, 

Cityscape 

Mapillary 

 

 
March 16, 2018 

 

 
- 

  

 

 

F 

R 

A 

M 

E 

W 

O 

R 

K 

S 

 

 

 

. 

 

 
 

Full-resolution 

Residual Networks 

(FRRN) [44] 

Two Stream Network 

Residual Stream: Carries 

information at the full 

image resolution, enabling 

precise adherence to 

segment boundaries. 

Pooling Stream: Sequence 

of pooling operations 

to obtain robust features 

for recognition. 

 

 

 

ResNet + VGG 

 

 

 

Cityscapes 

 

 

 

December 6, 2016 

 

 

 

YES 

  
Encoder 

Decoder 

 

 
R     S 

e e 

a g 

l m 

- e 

n 

T     t 

i a 

m     t 

e i 

o 

n 

 

Efficient Neural 

Network 

(ENet) [45] 

 Presents a different view 

on encoder-decoder 

architecture 

The decoder is to 

upsample the output 

of the encoder, 

only to fine-tuning. 

 

 
ResNet 

 

Cityscapes, 

CamVid, 

SUN 

 

 
June 7, 2016 

 

 
YES 

 
. Efficient Residual 

Factorized Network 

(ERFNet) [46] 

 A non-bottleneck-1D 

(non-bt-1D) 

layer and combines with 

bottleneck. 

ResNet 

ENet 

 
Cityscapes 

 
January 1, 2018 

 
YES 

  

Efficient Spatial 

Pyramid ESPNet [47] 

 Efficient spatial pyramid 

(ESP) modules: 

Spatial pyramid of 

dilated convolutions. 

 
ResNet 

CityScapes, 

PASCAL VOC, 

Mapillary 

 
March 22, 2018 

 
YES 

  
Restricted Deformable 

Convolution (RDC) 

Network [48] 

 Zoom Augmentation 

method: Transforming 

conventional images 

to fish-eye images. 

 
ERFNet 

CityScapes, 

SYNTHIA 

 
January 3, 2018 

 
- 
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bottleneck-1D (non-bt-1D) layer and combines with bottleneck 

designs in a way that best leverages their learning performance 

and efficiency. Considering ERFNet as the baseline, Deng et 

al. [48] proposed a new encoder decoder approach called Re- 

stricted Deformable Convolution (RDC) for road scene seman- 

tic segmentation handling large distorted images. It can model 

geometric transformations by learning the shapes of convolu- 

tional filters conditioned on the input feature map. They pro- 

posed zoom augmentation method to convert standard images 

to fisheye images. Mehta et al. [47] proposed a convolutional 

module called efficient spatial pyramid (ESP) to their new effi- 
cient neural network. The ESP module consists of point-wise 

convolutions (reducing the complexity) and the spatial pyramid 

of dilated convolutions (providing large receptive field). Re- 

cently, Casanova et al. [39]] proposed a Fully Convolutional 

Dense ResNet called FC-DRN. The basic idea is to combine 

the strength of the network architectures FC-ResNet (gradient 

flow and iterative refinement) and FC-DenseNet [51] (multi- 

scale feature representation and deep supervision).   Liang et 

al. [43] proposed a Dynamic Structured Semantic Propagation 

Network (DSSPN), that builds a large semantic neuron graph by 

taking in the semantic concept hierarchy into network construc- 

tion. In semantic propagation graph, each neuron is responsible 

for segmenting out regions of one concept in the word hierar- 

chy. They proposed dense semantic-enhanced neural block in 

which the learned features of each neuron are further propa- 

gated into its child neurons to evolve features for recognizing 

more fine-grained concepts. Samuel et al. [42] present In-Place 

Activated Batch Normalization (INPLACE-ABN) architecture 

module to reduce the training memory footprint of residual net- 

work ResNeXt [41] and ResNet-38 [38]. 

The focus on VGG and ResNet approaches of recent works 

led to remarkable results in semantic segmentation. The resid- 

ual learning frameworks follow the core idea ”skip connection” 

which is the main intuition behind their success. However, us- 

ing it in large scale can lead to memory problem. These ground- 

breaking works make it possible to train deeper networks with 

good performance. 

 Regional Proposal based Methods 

Regional proposal algorithms are very influential in com- 

puter vision (for object detection techniques). The core idea is 

to detect the regions according to the variety of color spaces and 

similarity metrics, and then perform the classification (region 

proposals that might contain object) often called Region-wise 

prediction. Regional Convolutional Neural Network (R-CNN) 

along with its descendants shown in Table 3. 

Girshick et al. [52] at UC Berkeley proposed a first region- 

based convolutional neural network (R-CNN) for object detec- 

tion tasks. The R-CNN consists of three modules; regional 

proposal generator in which they used selective search method 

[53] performing the function of generating 2000 different re- 

gions that have the highest probability of containing an object; 

convolutional neural network [22] for extracting features from 

each region; finally these feature from CNN are used as input 

to set of class specific linear SVMs. The features are also fed 
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into bounding box regressor to obtain the most accurate 

coor- dinates and reduce localization errors. Figure 5 

shows R-CNN architecture. 
 

Figure 5: The architecture of R-CNN [52] 

 

In [54], the authors proposed Fast R-CNN in which, a 

tech- nique called RoIPool (Region of Interest Pooling) is 

used that improves the training and testing speed and 

increases the accu- racy for object detection. Later a team 

from Microsoft proposed an Faster-RCNN [55] 

architecture. They introduce Region Pro- posal Network 

(RPN) which is a kind of fully convolutional network 

(FCN) constructed by adding a few additional convo- 

lutional layers that predict object bounds and objectness 

(set of object classes vs. background) scores at each 

position. The RPN generates region proposals (multiple 

scales and aspect ra- tios), which are fed into Fast R-CNN 

for object detection. RPN and Fast R-CNN share their 

convolutional features which re- duce the complexity, 

increases the speed and overall object de- tection 

accuracy. Lin et al. [57] present Feature Pyramid Net- 

works (FPN), a multi-scale pyramidal hierarchy of deep 

con- volutional network (ConvNet‟s), and creates feature 

pyramids having semantics at all levels, that can be used 

to replace fea- turized image pyramids with minimal cost 

(power, speed, or memory). He et al. [56] proposed a 

Mask Regional Convo- lutional Neural Network (Mask-

RCNN), extending Faster R- CNN to pixel-level image 

segmentation. It added a branch (small FCN) on each 

RoI for predicting object mask in a pixel- to pixel 

manner, in parallel with the existing branch for bound- 

ing box recognition (classification and regression). Faster 

R- CNN has a drawback of misalignment (pixel-to-pixel 

alignment) between network inputs and outputs. Mask-

RCNN fixes this is- sue by replacing the RoI pooling 

layer with Region of Interest Alignment (RoIAlign), a 

quantization-free layer that preserves exact spatial 

locations as shown in Figure 6. Recently, Liu et al. 

[58] proposed network built on Mask-RCNN and FPN 

named Path Aggregation Network (PANet), boosting 

information flow in proposal-based instance 

segmentation framework. 

 

Region proposal based neural networks have the 

advantage that object detection and segmentation can be 

achieved at the same time. Proposals are generated by 

algorithms ([59] provide an in-depth analysis) that are 

semantically meaningful and related to objects. It may 

contain an object class or several other classes that can 

help in determining the semantic labels. Furthermore, 

feeding the wrapped region proposals into a 

convolutional neu- ral network for classification can 

reduce the computational cost. 
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Table 3: Region Proposal based Methods 

 

Cetegory Strategy / Structure Corpus 
Original 

Architecture 

Testing 

Benchmark 

Published 

On 

Code 

Available 

  

Regional 

Convolutional 

Neural Network 

(R-CNN) [52] 

 

Fast R-CNN [54] 

 

 
Faster R-CNN [55] 

 

 

Mask R-CNN [56] 

 

 

Feature Pyramid 

Network (FPN) [57] 

 

Path Aggregation 

Network (PANet) [58] 

 Regional proposal generator: 

Selective Search Method 

CNN: for extracting features 

from each region 

Set of class specific linear 

SVMs to score features. 

 

AlexNet 

VGG-16 

 

 
PASCAL VOC 

 

 
October 22, 2014 

 

 
YES 

  Improvement in R-CNN 

Region of Interest (RoI) 

pooling layer. 

 

VGG-16 
 

PASCAL VOC 
 

September 27, 2015 
 

YES 

 
Regional Proposals 

 Region Proposal Network 

(RPN) 

Merge of RPN and 

Fast R-CNN. 

VGG-16 

FCN as RPN 

ZFNet 

 

PASCAL VOC 

COCO 

 
June 6, 2016 

 
YES 

  Region of Interest 

Alignment (RoIAlign): 

for pixel-to-pixel 

alignment 

VGG-16 

FCN as RPN 

ZFNet 

 

Cityscapes, 

COCO 

 
January 24, 2018 

 
YES 

  Create feature pyramids 

having semantics 

at all levels, that can 

be used to replace 

featured image pyramids. 

 
Fast/Faster 

R-CNN 

 

COCO 

 

April 18, 2017 

 

YES 

  Bottom up Path Augmentation 

Adaptive Feature Pooling: 

Fully connected Fusion: 

Mask R-CNN / 
FPN 

COCO, 

Cityscapes, 

Mapillary vistas 

 

March 5, 2018 
 

- 

 
 

 
 

Figure 6: The framework of Mask R-CNN [56] 

 

 

 Recurrent Neural Network based Methods 

Recurrent neural networks (RNNs) were genuinely intro- 

duced for dealing sequences [60, 61, 62]. Beside its accom- 

plishments in handwriting and speech recognition, RNNs are 

very much successful in computer vision tasks (dealing with 

images). We have only reviewed network models that adopt 

RNN in 2D images (integrate the convolution layers with RNNs). 

The Recurrent neural network made up of Long- Short-Term 

Memory (LSTM) [63] blocks. RNN capability to learn long 

term dependencies from sequential data and ability to keep mem- 

ory along the sequence makes it applicable in many computer 

vision tasks including semantic segmentation [64, 65] and scene 

segmentation and labeling [66, 67], based on using RNN CNN 

combination. Table 4 shows RNN based methods. 

Pinheiro et al. [68] proposed a convolutional neural net- 

work, which relies on a recurrent architecture (RCNN). RCNN 

is a sequence of shallow networks sharing same weights, at each 

instance using the downscaled input image and prediction maps 

from the previous instance of the network, and automatically 

learns to smooth its predicted labels. Heng et al. [66] pro- 

posed the contextual RNNs for scene labeling. The proposed 

network can capture long-range dependencies (GIST, local and 

global features) in an image. These features (after upsampling) 

are fused via an attention model [67]. Amaia et al. [75] present 

an encoder/decoder based recurrent neural network architecture 

for semantic instance segmentation. The proposed architecture 

much resembled FCN [77] architecture (encoder: feature ex- 

tractor) using skip-connection, except with decoder part that is 

the recurrent network (convolutional LSTM [76]), predicting 

one instance (object in the image) at a time and output them. 

Byeon et al. [37] present a two-dimensional (2D) long-short 

term memory (LSTM) recurrent neural network for scene la- 

beling. 2D LSTM network architecture consists of four LSTM 

blocks (it propagates surrounding contexts) and a feed forward 

layer (summing LSTM activations). This method is able to 

model long-range dependencies (both local and global) in im- 

age. Visin et al. [64] propose an RNN-based architecture for 

semantic segmentation codenamed ReSeg to model structured 

information of local generic features extracted from CNNs. The 

proposed model is a modified and extended version of ReNet 

[65]. The proposed recurrent layer is composed of multiple 

RNNs [73, 74] that sweep the image in both directions hori- 

zontally and vertically (output of hidden states), encoding local 

features, and providing relevant global information. ReNet lay- 

ers are stacked on top of the output of a FCN. Figure 7 shows 

Reseg network architecture. 

Shuai et al.   [69] use graphical RNNs (Directed Acyclic 

Graph-Recurrent Neural Network or DAG-RNN) to model long- 

range contextual dependencies of local features in the image 

for semantic segmentation. They proposed a new class weight- 

ing function in order to improve the accuracy for recognition 

of non-frequent classes. Inspired by DenseNet [71], Fan and 
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Table 4: Recurrent Neural Network based Methods 

 

Cetegory Strategy / Structure Corpus 
Original 

Architecture 

Testing 

Benchmark 
Published on 

Code 

Available 

   

Recurrent Convolution 

Neural Network 

(RCNN) [68] 

Feed-Forward Approach: 

Models non-local class 

dependencies in a scene 

from the raw image (Extract 

contextual information). 

 

LeNet 

 
Stanford Background 

SIFT Flow 

 

June 21, 2014 

 

- 

  

 
Directed 

Acyclic 

Graph 

RNNs 

 

 
DAG-RNNs [69] 

 

 

 
Dense Recurrent 

Neural Network 

(DD-RNN) [70] 

 Model the contextual 

dependencies of local 

features. 

Class Weighting 

Function that attends 

to rare classes. 

 

 
VGGNet + RNN 

 
SiftFlow, 

CamVid, 

Barcelona 

 

 
November 23, 2015 

 

 
- 

 Model contextual 

dependencies through dense 

connections Inspired by 

DenseNet [71]. 

Attention model to focus 

on relevant dependencies. 

 

 
VGGNet + RNN 

 
PASCAL Context, 

ADE20K, 

SiftFlow 

 

 
January 23, 2018 

 

 
- 

   

DAG-RNNs [72] 

 Model long-range semantic 

dependencies for graphical 

structured images. 

Class Weighting Function that 

attends to rare classes. 

 

VGGNet + RNN 

Sift Flow, 

Pascal Context 

COCO Stuff 

 

June 6, 2017 

 

- 

Recurrent 

Neural 

Network 

  
ReSeg: Recurrent 

Segmentation [64] 

Modified ReNet [65] 

Recurrent Layer: Composed 

by multiple RNNs. 

Gated Recurrent Unit 

(GRU) [73] or LSTM [74] 

 
ReNet + 

RNN 

CamVid, 

Oxford Flower, 

Weizmann Horse 

 

June 1, 2016 

 

YES 

  

Multi-level 

Contextual Recurrent 

Neural Networks 

(MCRNNs) [66] 

CRNNs encode three 
contextual cues (local, 

global and GIST). 

Attention model is 

adopted to improve 

effectiveness. 

 

VGGNet + 
RNN 

CamVid, 

KITTI, 

SiftFlow, 

Stanford-background, 

Cityscapes 

 

 
January 23, 2018 

 

 
- 

   

 
Two-Dimensional 

LSTM Network 

(2D-LSTM) [37] 

Model long-range dependencies 
(Local: Pixel-by -Pixel and 

Global: Label-by-Label) 

in an image. 

LSTM blocks: Activation 

(surrounding contexts 

in all directions). 

Feedforward layer: Summing 

LSTM activations. 

 

 

 
LSTM 

 

 
 

Stanford Background 

SIFT Flow 

 

 

 
June 7, 2015 

 

 

 
- 

   

Recurrent model for semantic 

instance segmentation [75] 

Encoder/Decoder based 
Recurrent Neural Network 

Encoder: Feature extractor 

Decoder: Convolutional 

LSTM [76], predicting 

one instance at a time 

ResNet 

+ 
Convolutional 

LSTM 

Pascal VOC 2012, 

Cityscapes, 

CVPPP Plant 

Leaf Segmentation 

 

 
March 22, 2018 

 

 
YES 
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Figure 7: ReSeg Network [64] 

 

 

Ling [70] proposed a DAG structured dense Recurrent Neu- 

ral Network (DD-RNNs) architecture to model vast dependen- 

cies in images through dense connections. Recently, Shuai et 

al. [72] proposed a DAG-RNN network to model long-range 

semantic dependencies for graphical structured images (DAG- 

structured). Their proposed segmentation network consists of 

three modules: Local region representation (using pre-trained 

CNN), context aggregation (using DAG-RNN), and feature map 

upsampling (deconvolution network). They also proposed a 

class-weighted loss during training in order to overcome class 

imbalance issue or give attention to rare classes. 

 

Recurrent neural network (RNN) can be very beneficial in se- 

mantic segmentation; it has recurrent connections (ability to re- 

tain previous information) and ability to capture context in an 

image by modeling long-range semantic dependencies for the 

image. 

 

 Upsampling / Deconvolution based Methods 

Convolution neural network models have the ability to learn 

automatically high-level features via a layer-to-layer propaga- 

tion with sacrificing the spatial information. One deep under- 

standing is that spatial information lost during downsampling 

operation can be regained by upsampling and deconvolution. 

Second is to develop reconstruction technique for increasing 

spatial accuracy and refinement technique for fusing the fea- 

tures of a low and high level. Table 5 shows Upsampling / 
Deconvolution based methods. 

Noh et al. [79] used this idea and developed a network 

model by learning a deconvolution network. The convolution 

network reduces the size of activations through feed forward- 

ing, and deconvolution network enlarges the activations through 

the combination of unpooling and deconvolution operations. 

Wang et al. [78] proposed an objectness-aware semantic seg- 

mentation framework (OA-Seg) using two networks, object pro- 

posal network (OPN), predicting object bounding boxes and 

their objectness scores, and lightweight deconvolutional neu- 

ral network (Light-DCNN) for upsampling the feature maps to 

larger resolution. Long et al. [77] proposed first Fully Convolu- 

tional Network (FCN), and made breakthroughs in deep learn- 

ing based semantic segmentation. FCN architectures have be- 

come the standard in semantic segmentation; most of the meth- 

ods utilize FCN architecture. FCN coverts the classification 

network [23, 27, 33] into fully convolutional network and pro- 

duces a probability map for input of arbitrary size. FCN re- 

covers the spatial information from the downsampling layers 

by adding upsampling layers to standard convolution network. 

They defined a skip architecture (shallow fine layer) that com- 

bines semantic information from a deep coarse layer with ap- 
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pearance information to produce precise and in depth 

segmen- tation. The basic idea was to re-architect and 

fine-tune clas- sification model (image classification) to 

learn efficiently from whole image inputs and whole 

image ground truths (prediction of semantic 

segmentation). This allows hence extending these 

classification models to segmentation, and improving the 

ar- chitecture with multi-resolution layer combinations. 

Figure 8 shows FCN architecture. Badrinarayanan et al. 

[80] present an 

 

Figure 8: FCN: Segmentation Network [77] 

 
encoder decoder structure deep fully convolutional 

neural net- work called SegNet. The encoder network has 

the same topol- ogy as VGG [33] with no fully 

connected layers followed by a decoder network (from 

[93]) for a pixel-wise classification. SegNet obtains 

higher resolution than that in [77] by using set of 

decoders, each one corresponding to each encoder. One 

key feature of SegNet is that the information transfer is 

direct in- stead of convolving them. SegNet was one the 

best model to use when dealing with image segmentation 

problems specially scene segmentation tasks. 

Ghiasi et al. [92] proposed a network called the 

Laplacian Pyramid Reconstruction and Refinement (LRR) 

since the ar- chitecture uses a Laplacian reconstruction 

pyramid [94]. The architecture uses low-resolution feature 

maps to reconstruct a coarse and low frequency 

segmentation map, and then refines this map by adding in 

higher frequency details derived from higher-resolution 

feature maps. Lin et al. [88] proposed a multi-path neural 

network named refinement network (RefineNet). RefineNet 

is an encoder decoder architecture inspired by resid- ual 

connection design [34] and consists of three components; 

Residual convolution unit (RCU), Multi-resolution fusion 

and Chained residual pooling. Multi-path network exploits 

features 

at multiple levels, it refines low-resolution features with 

con- centrated low-level features in a recursive manner 

to produce high-resolution feature maps for semantic 

segmentation. Is- lam et al. [91] proposed a refinement 

structure architecture called Label Refinement Network 

(LRN). LRN learns to pre- dict segmentation labels at 

multiple levels in the network and gradually refines the 

results at finer scale. LRN is an encoder decoder 

architecture and has supervision at multiple levels (at 

each stage of the decoder). Zhao et al. [87] proposed 

image cascade network (ICNet) which utilizes semantic 

information in low resolution along with details from 

high-resolution im- ages efficiently. The network focuses 

on fusion of features from multiple layers. They 

proposed a cascade feature fusion (CFF) unit that fuses 

the low feature maps with high feature 
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Table 5: Upsampling / Deconvolution based Methods 

 

Category Strategy / Structure Corpus 
Original 

Architecture 

Testing 

Benchmark 

Published 

on 

Code 

Available 

  

 
. 

Object Proposal Network 

(OPN) generate object 

Ojectness-Aware Segmentation    proposals 

(OA-Seg) [78] Lightweight deconvolutional 

neural network (Light-DCNN) 

for upsampling 

 

 
VGGNet 

 

 
PASCAL VOC 

 

October 15, 

2016 

 

 
- 

  
Fully Convolutional DenseNet 

(FC-DenseNet) [51] 

Built from a downsampling 

path, an upsampling path and 

skip connections. 

The main goal is to exploit 

the feature reuses 

 

DenseNet 

 
CamVid 

Gatech 

 
October 31, 

2017 

 

YES 

 

 
Unpooling 

of Low 

Level 

Features 

or Score 

Maps 

 

 

 

 

 
Encoder 

Decoder 

Convolution Network: 

ConvDeconvNet 
Feature extractor 

[79] 
Deconvolution Network: 

Shape Generartor 
from the feature extractor 

 

VGGNet 

 

PASCAL VOC 

 
May 18, 

2015 

 

YES 

 
SegNet [80] 

Obtain higher resolution 

by using a set of decoders 

one corresponding to each 

encoder. 

VGGNet, 

DeconvNet 

Cityscapes, 

KITTI, 

SUN RGB-D, 

CamVid 

October 9, 

2016 

 
YES 

  Stacked 

Deconvolutional 

Network 

(SDN) [81] 

SDN Unit: Efficient shallow 
deconvolutional network 

stack multiple SDN units one 

by one with dense connections. 

 
DenseNet 

PASCAL VOC 

CamVid, 

GATECH 

August 16, 

2017 

 

 
Squeeze- 

SegNet [82] 

DFire Module: Series of 

concatenation of expand 

module of SqueezeNet. 

SqueezeNet 

SegNet 

CamVid, 

Cityscapes 

April 13, 

2018 
- 

  

 
Fully Convolutional 

Network 

(FCN) [77] 

Deep filter consisting 

(convolution, pooling, 

activation functions, 

deconvolution) layers. 

Upsampling: end-to-end 

learning by backpropagation 

from the pixel-wise loss. 

 

Skip (Shallow fine layer) that 

combines semantic information 

from a deep, coarse layer with the 

appearance information to improve 

segmentation. 

FCN32s FCN16s FCN8s 

 

 

 

 
Finetuning of 

AlexNet, 

VGGNet, 

GoogLeNet 

 

 
Cityscapes, 

CIFAR10, 

KITTI, 

PASCAL VOC, 

CamVid, 

ADE20K, 

PASCAL Context, 

SYNTHIA, 

Freiburg Forest 

 

 

 

 

 
March 8, 

2015 

 

 

 

 

 
YES 

  
Skip Layer 

Architecture 

  
F 

e 

a 

t 

u 

r 

e 

 

F 

u 

s 

i 

o 

n 

Fully Combine 

Convolutional 

Network 

(FCCN) [83] 

Fusing and reusing feature 

maps Layer by Layer 

 
FCN-VGG 

CamVid, 

PASCAL VOC, 

ADE20K 

January 4, 

2018 

 
- 

 

 
Upsampling / 

Deconvolution 

 
Semantic Motion 

Segmentation 

Network 

(SMSNet)[84] 

FlowNet2 architecture[85] 

Semantic Segmentation component: 

AdapNet architecture 

Fusion component: combines both 

the motion and 

semantic features 

 

 
FlowNet, 

AdapNet 

 

 
Cityscapes, 

KITTI 

 

 
September 1, 

2017 

 

 
YES 

  
Dense Decoder 

Shortcut 

Connections [86] 

 
Image Cascade 

Network 

(ICNet) [87] 

Encoder: ResNeXt architecture 

A decoder is made up of blocks 

which generate semantic features 

maps. 

Multi-level fusion in single-pass 

inference 

Proposed a cascade feature 

fusion (CFF) unit 

 

 
ResNeXt 

Pascal VOC, 

Pascal-Context, 

Pascal Person-Part, 

NYUD, CamVid 

 

June 22, 

2018 

 

 
- 

Modified 

PSPNet 

 
Cityscapes 

 
April 27, 2017 

 
YES 

   

Refine Network 

(RefineNet) [88] 

Three Components 

1. Residual convolution unit 

(RCU) 

2. Multi-resolution fusion 

3. Chained residual pooling 

 

 
ResNet 

Cityscapes, 

ADE20K, 

NYUDv2, 

SUN-RGBD, 

PASCAL VOC 

& Context 

 

November 26, 

2016 

 

 
YES 

 RGB-D Multi-level 

Residual Feature 

Fusion Network 

(RDFNET) [89] 

Multi-modal feature fusion (MMF): 

the fusion of features (RGB and depth) 

Multi-level feature refinement: 

Refining feature 

 
RefineNet 

NYUDv2, 

SUN RGB-D 

December 25, 

2017 

 
YES 

Reconstruction 

and 

Refinement 

 

 
Encoder 

Decoder 

Gated Feedback 

Refinement 

Network 

(G-FRNet) [90] 

Gate Unit: Combines low-resolution 

features and high-resolution features 

to produce contextual information. 

Refinement unit: Generate new label 

maps with larger spatial dimensions. 

 

VGGNet 

CamVid, 

PASCAL VOC, 

Horse-Cow 

Parsing 

 
July 1, 

2017 

 

YES 

  Label Refinement 

Network 

(LRN) [91] 

Predicts semantic labels at several 

different resolutions in a coarse-to- 

fine fashion. 

SegNet 

CamVid, 

SUN RGB-D, 

PASCAL VOC 

March 1, 

2017 
- 



International Journal of Engineering Sciences Paradigms and Researches (IJESPR) 

(Vol. 32, Issue 01) and (Publishing Month: July 2016) 

(An Indexed, Referred and Impact Factor Journal) 

ISSN: 2319-6564 

www.ijesonline.com 

339 

 

Laplacian Pyramid 

Reconstruction and 

Refinement 

(LRR) [92] 

Boundary mask ”inset” used for 

localizing object boundaries. 

LRR-32x 16x and 8x layers 

 
ResNet 

Cityscapes, 

PASCAL VOC 

July 30, 

2016 

 
YES 
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maps. Fu et al. [81] proposed Stacked Deconvolutional Net- 

work (SDN), inspired by [71]. The basic idea is stacking mul- 

tiple shallow deconvolutional networks one by one in order to 

recover high-resolution prediction. Jegou et al. [51] proposed a 

Fully Convolutional DenseNet FC-DenseNet, the extension of 

[71] by adding an upsampling path and skipping connections to 

recover the full input resolution. Bilinski and Prisacariu [86] 

proposed an architecture following encoder decoder strategy. 

The encoder is based on ResNeXt architecture and decoder is 

made of blocks (dense decoder shortcut connections), which 

generate semantic feature maps and allow multi level fusion in 

single pass inference. 

Yang et al. [95] proposed a fully combined convolutional 

network (FCCN) to improve the upsampling operation of FCN. 

The network follows layer-by-layer upsampling strategy, and 

after each upsampling operation the size of input feature map 

is doubled. They also proposed a soft cost function that fur- 

ther improves training. Recently in [83], they extend FCCN 

with a highly fused network. The proposed network has three 

major parts: feature downsampling, combined feature upsam- 

pling and multiple predictions. The fused network makes use 

of multiple scale feature information in low layers. Multiple 

soft cost functions are used to train the proposed model. In- 

spired by RefineNet, Park et al. [89] proposed RGB-D fusion 

network (RDFNet) for semantic segmentation. The proposed 

architecture is made of two feature fusion blocks: multi-modal 

feature fusion (MMF) to fuse features (RGB and depth) in dif- 

ferent modalities, and multi-level feature refinement block to 

further refining feature for semantic segmentation.   Islam et 

al. [90] proposed Gated Feedback Refinement Network (G- 

FRNet), an encoder-decoder style architecture. The proposed 

gated mechanism (Gate Unit) takes two feature maps one after 

another, i.e., low-resolution feature with larger receptive fields 

and high-resolution feature with smaller receptive fields, and 

combines them in order to produce contextual information. The 

feature maps with different spatial dimension generated by en- 

coder network pass through gate unit before feeding to the de- 

coder (feedback refinement network). The refinement network 

gradually refines the feature label maps. Recently, Nanfack et 

al. [82] proposed encoder-decoder based Squeeze-SegNet ar- 

chitecture. Encoder module is a SqueezeNet architecture [96] 

(using the fire module and removing the average pooling layer) 

inspired by SegNet which removes all fully connected layers of 

VGG. The squeeze-decoder module is the inversion of the fire 

module and convolutional layers of SqueezeNet. 

 Increase Resolution of Feature based Methods 

Another type of method is to recover the spatial resolution 

by using atrous convolution [97] and dilated convolution [98] 

which can generate high-resolution feature maps for dense pre- 

diction. The dilated convolution hosts another parameter “dila- 

tion rate” (describing space between the values in a kernel) to 

convolution layer and it has the ability to expand the receptive 

field without losing resolution. Table 6 shows increase resolu- 

tion of feature based network models. 

Chen et al. [97] from Google proposed a deep convolu- 

tional neural network model named DeepLab. Instead of us- 
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ing deconvolution, they proposed Atrous („Holes‟) 

convolution. The atrous algorithm was originally 

developed by Holschnei- der et al. [106] for computing 

undecimated wavelet transform (UWT). The DeepLab 

architecture is similar to the one in [77] with some 

modification like, converting fully-connected layers into 

convolutional layers, using stride of 8 pixels, skip 

subsam- pling after last two pooling layers, and modifying 

convolutional filters in the layers (increasing length of last 

three convolutional layers by 2x and the first fully 

connected layer by 4x) by in- troducing zeros. The 

proposed method is combined with fully connected 

conditional random fields (CRF) and is able to pro- duce 

semantically accurate predictions and detailed segmenta- 

tion maps efficiently. Yu and Koltun [98], developed a 

convolu- tional neural network module design for dense 

prediction using dilated convolutions to combine 

multiscale contextual informa- tion without losing 

resolution and analyzing rescaled images for semantic 

segmentation. This module can be plugged into exist- ing 

architectures at any resolution. Figure 9 shows an 

example of dilation convolution with different dilation 

rates, which de- fine spacing between the values in a 

kernel. 
 

Figure 9: Dilated convolution with size of 3 × 3 with different dilation rates. 

(a) dilation rate = 1, receptive field = 3 × 3 (b) dilation rate = 2, receptive field 

= 7 × 7. 

Treml et al. [102] proposed an encoder decoder 

structured architecture (SQNet). The encoder is a 

modified SqueezeNet architecture [96] so-called “Fire”, 

consisting of convolutional and pooling layers. The 

decoder is based on parallel dilated convolution layer. 

Wu et al. [105] present a fully convolutional residual 

network (FCRN), a new network for generating feature 

maps of any higher resolution, without changing the 

weights. They proposed a method to simulate a high 

resolution network with a low resolution network, and 

online bootstrapping method for training. In [99], Chen 

and his team proposed atrous spatial pyramid pooling 

(ASPP) module, consisting of multiple paral- lel atrous 

convolutional layers with different sampling rates to 

strongly segment objects at multiple scales. Figure 10 

shows example of ASPP. 

The proposed network is based on the state-of-art 

ResNet- 101 [34] image classification DCNN. They 

combine the net- work with a fully connected 

Conditional Random Field (CRF) in order to improve the 

localization of object boundaries. Yu and Koltun[104] 

present another deep neural network named Dilated 

Residual Network (DRN), a residual network ResNet 

[34] like architecture, in which subset of interior subsamples 
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Table 6: Increase Resolution of Features based Methods 

 
Category Strategy / Structure Corpus Original Architecture Testing Benchmark Published on Code Available 

. .  DeepLab [97] 
Atrous (‟Holes‟) 

FCN-VGG  
Cityscapes, 

June 7, 2016 YES 
Convolution  PASCAL VOC 

  

 
Atrous 

Convolution 

  

 
DeepLabV2 [99] 

Atrous Spatial Pyramid 
Pooling (ASPP). 

Cityscapes,
 

Method effectively enlarge 
FCN-ResNet PASCAL VOC, May 12, 2017 YES 

the field of view of   
COCO

 
filters to incorporate 
multi-scale context. 

    

DeepLabV3 [100] 

Rethink Atrous Convolution 
Cityscapes,

 

Augment the Atrous Spatial DeepLabV2 
PASCAL VOC 

December 5, 2017 - 

Pyramid Pooling (ASPP). 

   DeepLabV3+ [101] 
Encoder Decoder Approach 

DeepLabV3 PASCAL VOC March 8, 2018 YES 
Xception [27] 

 
 

 
Increase 

Resolution 

of Features 

 

. 

  

Dilated 

Convolutions 

Module [98] 

Rectangular Prism 
convolutional layers, 

Cityscapes,
 

with no pooling or VGGNet 
PASCAL VOC 

April 30, 2016 YES 

subsampling for multi-scale 
context aggregation [34]. 

 Fire module: modified 
SqueezeNet [96] 

 Dilated 

Convolution 
SQ Network [102] 

Parallel dilated 
SqueezeNet Cityscapes December 10, 2016 - 

convolution layer. 

Refinement module: 

SharpMask approach 

   Hybrid Dilated 

Convolution 

(HDC) [103] 

Dense Upsampling 
KITTI,

 

Convolution (DUC) ResNet + DUC 
PASCAL VOC 

November 9, 2017 YES 

by TuSimple. 

 

 
. 

  Dilated Residual 

Network (DRN) [104] 

Replacing dilated 

convolutions layers ResNet Cityscapes May 28, 2017 YES 

into ResNet model. 

 

Fully Convolutional 

Residual Network 

(FCRN) [105] 

Method to simulate a 

high resolution network 

with a low resolution network. 
ResNet + FCN Cityscapes,

 

Enlarge the field-of-view 
DeepLab PASCAL VOC 

April 15, 2016 - 

(FoV) of features. 
Online bootstrapping 

method for training. 

 
 

 
 

Figure 10: Atrous Spatial Pyramid Pooling (ASPP) [99] 

 

 

layers are replaced by dilation [98] to increase the resolution. 

The subsampling removing means removing striding from some 

of the interior layers, increasing downstream resolution and re- 

ducing the receptive field in subsequent layers. They also pro- 

pose an approach to remove the gridding artifacts introduced by 

dilation (degridding), which further improves the performance. 

Later, Chen et al. [100] revisited atrous convolution and pro- 

posed a new system network called DeepLab V3. They de- 

signed new modules in which atrous convolution works in cas- 

cade or in parallel manner (spatial pyramid pooling as shown in 

Figure 11 (a)) to capture multi-scale context by adopting mul- 

tiple atrous rates, and used batch normalization to train. Their 

main idea was to duplicate several copies of the last block in 

ResNet [34] and arrange them in cascade manner. Wang et al. 

[103] proposed a method named design dense upsampling con- 

volution (DUC). The basic idea of DUC is to transform the label 

map into a smaller label map with multiple channels (dividing 

the label map into equal subparts having same height and width 

as the incoming feature map). They also proposed a hybrid 

dilated convolution (HDC) framework in the encoding phase 

that effectively enlarges the receptive fields of the network to 

aggregate global information. Recently in [101] the DeepLab 

V3+, which is the extended version of DeepLab V3 was pre- 

sented. Inspired by [107], the authors proposed a decoder mod- 

ule, in which the encoder features are upsampled by a factor 

of 4 instead of 16 as in [100], then are concatenated with the 

corresponding low-level features from network backbone hav- 

ing the same spatial resolution as shown in Figure 11 (b). They 

adopted the Xception model [31] and applied depth-wise sep- 

arable convolution (to reduce computation complexity) to both 

Atrous Spatial Pyramid Pooling (ASPP) and decoder modules. 

 
Compared to regular convolution with larger filters, atrous con- 

volution allows to effectively enlarging the field of view of fil- 

ters without increasing the number of parameters or the amount 

of computation. Dilated convolution is a simple yet powerful 

alternative to deconvolutional in dense prediction tasks. 

 

 Enhancement of Features based Methods 

Enhancement of feature based methods include extraction of feature at 

multi-scale or from a sequence of nested regions. In deep networks for 

semantic segmentation, CNNs are ap- plied to image square patches, often 

called kernel of fixed size 
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Table 7: Enhancement of Features based Mtheods 

 

Category Strategy / Structure Corpus 
Original 

Architecture 

Testing 

Benchmark 

Published 

on 

Code 

Available 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enhancement 

of 

Features 

 

 

 

 

 

 

 

 

 

 

 
 

Multi-scale 

Features 

Extraction 

 

 

 
Multi-Scale 

Network [108][109] 

Multi-scale Convolutional Network 

extract dense feature vectors that 

encode regions of multiple sizes 

centered on each pixel. 

Multiple post-processing methods 

for labeling. 

 

 
LeNet 

 

Sift Flow, 

Barcelona, 

Stanford 

Background 

 

October 24, 

2012 

 

 
- 

Learn multi-scale features using 

the image depth information. 
LeNet NYUDv2 

March 14, 

2013 
- 

 

 

Multi-scale Patch 

Aggregation (MPA) [110] 

Multi-scale Patch Generator: 

Croppingcorresponding feature 

grids from Image, and aligning 

these grids to improve the 

generalization ability. 

A strategy is proposed to assign 

the classification and segmentation 

labels to the patches. 

 

 

 
VGG-16 

 

 

PASCAL VOC, 

COCO 

 

 

June 1, 

2016 

 

 

 
- 

Hypercolumns [111] 
Hypercolumn Classifier: Pixel 

Classification. 

Tested with 

R-CNN 
PASCAL VOC 

November 22, 

2014 
- 

 
DeepLab Attention 

Model [67] 

Learns to weight the multi-scale 

features according to the object 

scales presented in the image, then 

for each scale outputs a weight map 

which weights feature pixel by pixel. 

 

DeepLab 

 
PASCAL VOC, 

COCO 

 
June 1, 

2016 

 

- 

Pyramid Scene 

Parsing Network 

(PSPNet) [112] 

Pyramid pooling module consists 

of the large kernel pooling layers for 

global scene prior construction 

ResNet 

Dilated FCN 

Cityscapes, 

ADE20K, 

PASCAL VOC 

April 25, 

2017 

 
YES 

Cascade Dilated 

Convolutions 

Network [113] 

Cascading dilated convolutions 

(consecutive layers connection) 

to extract dense features. 

Feature fusion through Maxout Layer 

(Maxout Network [114]) 

 
Dialted-ResNet 

FCN-VGG 

 

PASCAL VOC 

 
February 21, 

2018 

 

- 

Context Contrasted 

Local (CCL) 

Model [115] 

CCL: Consists of several chained 

context-local blocks to make multi- 

level context contrasted local features. 

Gate Sum: Fusion strategy to 

aggregate appropriate score maps. 

 

ResNet 

Pascal Context, 

SUN-RGBD, 

COCO Stuff 

 
June 18, 

2018 

 

- 

 

 

 
 

Feature Extraction 

from sequence 

of nested regions 

Cascaded Feature 

Network 

(CFN) [116] 

Context-aware Receptive Field 

(CaRF): to aggregate convolutional 

features of local context into strong 

features. 

FCN + 
RefineNet 

NYUDv2, 

SUN-RGBD 

December 25, 

2017 

 
- 

 

 

 
 

Zoom Out [117] 

Zoom out features construction 

using superpixels (SLIC Method) 

from different levels of spatial context 

Local Level: Superpixel itself 

Distant Level: Regions large enough 

to cover fractions of an object or 

entire object. 

Scene Level: Entire scene 

Combining features across levels rather 

than predicting. 

 

 

 
 

VGG-16 

 

 

 
 

PASCAL VOC 

 

 

 
December 2, 

2014 

 

 

 
 

- 
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Figure 11: DeepLabV3 and DeepLabV3+ [101] 

 

 

centered at each pixel, labeling each pixel by observing small 

region around it. The network covering large and wide con- 

text (size of receptive field) is essential for better performance, 

which can be achieved but with increase the computational com- 

plexity. Multi-scale feature extraction or extraction from a se- 

quence of nested region strategies can be taken in to account 

while ensuring computational efficiency. Table 7 shows en- 

hancement of features based network models. Alvarez et al. 

[107] propose a network algorithm to learn local features at 

multi-scales and multi-resolutions using different kernel sizes. 

The features are fused using weighted linear combination (fea- 

tures of each class with different weight) learned at the same 

time (offline) directly from the training data.   Farabet et al. 

[108] proposed a method that extracts multiscale features vec- 

tors from the image pyramid (Laplacian pyramid version of 

the input image) using the multi-scale convolutional network 

shown in Figure 12. Each feature vector encodes regions of 

multiple sizes centered on each pixel location, covering wide 

context. 
 

Figure 12: Multiscale CNN for scene parsing [108] 

 

Couprie et al. [109] adopted a similar approach, and pro- 

posed a convolutional network to learn multi-scale features us- 

ing image depth information. Liu et al. [110] proposed the 

strategy named Multi-scale Patch Aggregation (MPA). The pro- 

posed network generates multi-scale patches for object parsing, 

achieves segmentation and classification for each patch at the 

same time and aggregates them to infer objects. Hariharan et 

al. [111] proposed a pixel classification method (multiple lev- 

els of abstraction and scale), Hypercolumn. The basic idea is to 

extract feature information from earlier layers and last layers of 

the CNN to allow precise localization and high semantics, and 

then resizing each feature map with bilinear interpolation. Fur- 

ther some or all of the features are concatenated into a single 

vector for every location. 

Mostajabi et al. [117] present a feedforward classification 

method named Zoom-Out using Superpixels (SLIC [118]). It 

extracts features from different levels (local level: superpixel 

itself; distant level: regions large enough to cover fractions of 

object or entire object; scene level: entire scene) of spatial con- 

text around the superpixel to contribute to labeling decision at 

that superpixel. Then it computes feature representation at each 

level and combine all the features before feeding them to a clas- 

sifier. Chen et al. [67] proposed attention based model, with 

ability to choose each time, which part of the input to look at 

in order to perform the task. The proposed attention model 

learns to weight the multi-scale features according to the ob- 

ject scales presented in the image (e.g. the model learns to put 

large weights on features at a coarse scale for large objects). 

Then for each scale, the attention model outputs a weight map 

which weights features pixel by pixel, and the weighted sum 

of FCN-produced score maps across all scales is then used for 

classification. 

Zhao et al. [112] present pyramid scene parsing network 

(PSPNet) for semantic segmentation, which allows multi-scale 

feature ensembling. They have introduced the pyramid pool- 

ing module consisting of large kernel pooling layers shown in 

Figure 12, which empirically proves to be an effective global 

contextual prior, containing information with different pyramid 

scales and varying among different sub-regions. It concatenates 

the feature maps with the up sampled output of parallel pooling 

layers. The idea is also called intermediate supervision. The 

representations are fed into a convolution layer to get the final 

per-pixel prediction. Figure 13 shows PSPNet Architecture. 

 

Figure 13: Pyramid Scene Parsing Network (PSPNet) [112] 

 
Vo and Lee [113] proposed a deep network architecture with multi-

scales dilated convolution layers to extract multi scale features from 

multi resolution input images. The basic idea consists of cascading 

dilated convolutions (consecutive layers connection), each layer, with 

a higher rate than the previous one, achieves denser feature maps. All 

feature maps are then sized to same resolution and fused into a 

Maxout layer [114] to get most driven and leading features from all 

feature maps. Lin et al. [116] proposed a network called cascaded 

feature network (CFN). It utilizes depth information, dividing the im- 

age into layers representing visual characteristic of objects and scenes 

(multi-scene resolutions). Proposing context-aware re- ceptive field 

CaRF (superpixel based), aggregates convolutional features of local 

context into strong features. The CaRF gener- 
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ates contextual representations, large superpixels for low scene- 

resolution regions and finer super pixels for regions with higher 

scene-resolution. Recently, Ding et al. [115] proposed a con- 

text contrasted local (CCL) model to obtain multi-scale features 

(both context and local). Instead of using simple sum, they pro- 

posed Gate-Sum fusion strategy to aggregate appropriate score 

maps, which allows a network to choose better and more de- 

sired scale of features. 

 

Several methods aimed to capture multi-scale features, higher- 

layer feature contains more semantic meaning and less location 

information. Combining the advantages of multi-resolution im- 

ages and multi-scale feature descriptors to extract both global 

and local information in an image without losing resolution im- 

proves the performance of the network. 

 Semi and Weakly Supervised Concept 

The CNN‟s are becoming deeper and deeper by increasing 

the depth and width (the number of levels of the network and the 

number of units at each level). Deep CNN requires large-scale 

dataset and massive computing power for training. Collecting 

labeled dataset manually is time consuming and requires enor- 

mous human efforts. To comfort these efforts, semi or weakly 

supervised methods are applied using deep learning techniques. 

Table 8 shows semi and weakly supervised network models 

used for semantic segmentation. 

Work by Pathak et al.   [119]] is to be the first consider- 

ing the fine-tuning of CNN pre-trained for object recognition, 

using image-level labels, within a weakly supervised segmen- 

tation context. They introduced a fully convolutional network 

method, which relies on a Multiple Instance Learning (MIL- 

FCN) [138]], i.e., learn pixel-level semantic segmentation from 

weak image level labels indicating the presence or absence of 

an object. They proposed a multi-class pixel-level loss inspired 

by the binary MIL scenario. Pinheiro et al. [120] proposed a 

weakly supervised approach to produce pixel level labels from 

image-level labels using Log-Sum-Exp (LSE) [121] method, 

which assigns the same weight to all pixels of the image dur- 

ing the training. Papandreou et al. [123] presented a weakly 

and semi-supervised learning method using weak annotations, 

either alone or in combination with small number of strong an- 

notations. They developed a method called Expectation Maxi- 

mization (EM) for training DCNN from weakly annotated data. 

Hong et al. [122] proposed a semi-supervised method (Decou- 

pledNet), which uses two separate networks, one for classifica- 

tion (classifies the object label) and the other for segmentation 

(to obtain figure-ground segmentation of each classified label). 

Dai et al. [135] propose a method based on bounding box an- 

notations (BoxSup). The unsupervised region proposal method 

(selective search [53]) is used to generate segmentation masks, 

and these masks are used for training convolutional network. 

The proposed BoxSup model, trained with a large set of boxes, 

increases the object recognition accuracy (the accuracy in the 

middle of an object), and improves object boundaries. Khoreva 

et al. [139] proposed a box-driven segmentation technique for 

semantic segmentation, which generates input labels for train- 

ing from the bounding box annotations using Grab Cut-like al- 
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gorithm [140] without modifying the training procedure. 

Luo et al. [125] present a weakly and semi-supervised 

dual image seg- mentation (DIS) learning strategy, which 

performs segmenta- tion (capturing the accurate object 

classes), and reconstruction (accurate object shapes and 

boundaries). The idea is to predict tags, label maps from 

an input image, and perform reconstruc- tion of images 

using predicted label maps. 

Saleh et al. [129] proposed weakly supervised 

segmenta- tion network with built-in 

foreground/background prior. The main idea is to extract 

the localization information directly from the network 

itself (extracting foreground/background masks). Later 

in [130], they extended their work to obtain multi-class 

(class-specific) masks by the fusion of foreground / 
background ones with information extracted from a 

weakly supervised lo- calization network inspired by 

[141]. Saito et al. [131] present a method that uses the 

feature maps extracted from a pre-trained dilated ResNet 

having built-in priors for semantic segmenta- tion. They 

proposed a superpixel clustering method to gener- ate 

road clusters (to select largest cluster at the bottom half 

of image), that are considered as the label to train CNN 

for seg- mentation. Barnes et al. [128] develop a weakly 

supervised method for autonomous driving applications 

for generating a large amount of labelled images (from 

multiple sensors and data collected during driving) 

containing path proposals with- out any manual 

annotation. Ye et al. [134] proposed a method for 

learning convolutional neural network models from 

images with three different types of annotations, i.e., 

image-level la- bels for classification, box-level labels 

for object detection and pixel-level labels for semantic 

segmentation. They proposed an annotation-specific 

loss module (with three branches, each branch with a 

different loss function), which is designed to train the 

network for each of the three different annotations. 
Souly et al. [126] proposed a semi-supervised semantic seg- 

mentation method using adversarial learning inspired by 

Gen- erative Adversarial Networks (GANs) [142]. 

Later, Hung et al. [154] proposed a similar approach 

which consists of two sub nets; segmentation net (to 

generate class probability maps) and discriminator net (to 

generate spatial probability maps with both labeled and 

unlabeled data). Wei et al. [133] presented a weakly and 

semi supervised approach by using multiple dilated 

convolutions. They proposed augmented classification 

network with multi-dilated convolutional (MDC) blocks 

that generate dense object localization maps, which are 

utilized for seman- tic segmentation in both weakly and 

semi supervised manner. Huang et al. [124] proposed a 

weakly supervised network, which produces labels using 

the contextual information within an image. They 

proposed a seeded region growing module to find small 

and tiny discriminative regions from the object of in- 

terest using image labels to generate complete and precise 

pixel level labels, which are used to train semantic 

segmentation net- work. Wei et al. [143] proposed a Simple to 

Complex (STC) network, a weakly supervised approach using 

image-level an- notations. The basic idea is first to learn from 

simple images (to generate saliency maps using discriminative 

regional fea- ture integration (DRFI)), and then apply learned 

network to the complex images (to generate pixel-level 

segmentation masks of complex images) for semantic 

segmentation. 
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Table 8: Semi and Weakly Supervised based Methods 

Category Strategy / Structure Corpus 
Original 

Architecture 
Testing 

Benchmark 
Published 

on 
Code 

Available 

  Multiple Instance 
Learning 

(MIL-FCN) [119] 

Multi-class pixel-level loss inspired PASCAL April 15, 

by the binary MIL scenario. 
VGG 

VOC 2015 
-
 

  

Aggreg-LSE [120] 
An approach to produce pixel-level 

PASCAL June 7,
 

labels from image-level labels using VGG 
VOC 2015 

- 
Log-Sum-Exp (LSE) [121]. 

  

Utilization 

of 

Heterogeneous 

Annotations 

 

DecoupledNet 

[122] 

Classification Network: Identifies labels 
Segmentation Network: Produces pixel-wise 
figure-ground segmentation corresponding to 

VGG 
PASCAL June 17, 

YES 
each identified label.   VOC  2015 

Bridging layers connecting the two Networks 

(Decoupling). 

   

WSSL [123] 
Expectation Maximum (EM) Module for Cityscapes, 

December 7,
 

fast training under both weakly and DeepLab PASCAL 
2015 

YES 
semi-supervised settings. VOC 

  Simple to Complex 

(STC) [124] 

A progressively training strategy is proposed 
VGG + PASCAL November 1,

 

by incorporating simple-to-complex images 
DeepLab VOC 2017 

- 
with image-level labels. 

   
Dual Image 

Segmentation 

DIS [125] 

Segmentation: Predict tags and label maps 
from the image (captured the accurate object 
classes). 

ResNet 
PASCAL December 25, 

- 
Reconstruction: The reconstruction of images   VOC  2017 

using predicted label maps 

(accurate object shapes and boundaries). 

  

Image 

Level 

Labels 

 
Adversarial 

Learning 

 
SW-GAN 

[126] 

PASCAL 
Generative Adversarial Network framework VOC, 

March 28,
 

which extends the typical GAN to a VGG SiftFlow, 
2017 

- 

pixel-level prediction. StanfordBG, 
CamVid 

 

Weakly 

and 

Semi 

Supervised 

  

Semi-Adv 

[127] 

Propose a fully convolutional discriminator 
PASCAL

 

that learns to differentiate between ground 
DeeplabV2 VOC, 

February 22, 

truth label maps and probability maps of 
Cityscapes 

2018 

segmentation predictions. 

 
YES 

 

 

- 

Segmenting 

Path 

Proposals [128] 

Weakly-supervised approach to segmenting 
proposed paths for a road vehicle 

SegNet 
KITTI, November 17, 

Method for generating a large amount of labeled  Oxford  2017 
images without any manual annotation. 

  

Built-in 

Feature 

Extraction 

Approach 

Fg/Bg Masks 

[129] 

 

Multi-Class 

Mask [130] 

Weakly-supervised segmentation network with 
PASCAL September 2,

 

built-in Foreground/Background Prior VGG-16 
VOC 2016 

- 
   ”Information extracted from a pre-trained network”.  

Foreground/background mask combined to 
PASCAL June 6,

 

generate the class-specific mask VGG-16 
VOC 2017 

- 
Multi-Class Prior. 

   Superpixel 

Clustering 

Method [131] 

Pre-trained Dilated ResNet for Feature extraction 
DRN + November 16,

 

SuperPixel Align Method (FH Superpixel) 
SegNet 

Cityscapes 
2017 

- 
Road Feature Clustering (K-Means). 

  Deep Seeded 
Region Growing 

(DSRG) 

Network [132] 

Utilize the Seeded Region Growing 
VGG 

PASCAL 
February 1, 

mechanism to generates pixel-level labels. 
VOC, 

2018 
YES

 
MS COCO 

  
Multi-Dilated 

Convolutional 

(MDC) [133] 

Multi-Dilated Convolutional (MDC) Blocks: 
Produce dense object localization maps which  VGG + PASCAL May 28, 

- 
can be utilized for segmentation both DeepLab  VOC  2018 

in weakly and semi-supervised manner. 

 
Multi- 

Level 

Labels 

Diverse 

Supervision 

Annotation- 

Specific 

FCN [134] 

Annotation-Specific Loss Module 
Image-level labels for classification 

FCN 
PASCAL February 1, 

- 
Box-level labels for object detection   VOC  2018 
Pixel-level labels for semantic segmentation 

  

Bounding 

Box 

 

 
Boxsup [135] 

The semi-supervised approach based on bounding 
box annotations PASCAL 
Uses SelectiveSearch [136]: to generate 

FCN  
VOC, May 17, 

- 
segmentation masks.  CONTEXT,  2015 

Iterate between an automatically generating region MS COCO 

proposals and training convolutional network 

  

MCG-GrabCut+ 
[137] 

A weakly supervised approach based on 
PASCAL

 

bounding box annotations VGG + 
VOC, 

November 9, 
YES

 

Uses GrabCut+ Approach [132]: to estimate DeepLab 
MS COOC 

2017 

object segment. 
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Semi and weakly supervised learning aims to reduce the load 

for full annotation. These methods improved learning perfor- 

mance using weak annotations in the form of image-level la- 

bels (information about which object classes are present) and 

bounding boxes (coarse object locations). 

 Spatio-Temporal based Methods: 

In this section, we aim to investigate the deep convolutional 

networks that use spatial information along with temporal in- 

formation for semantic segmentation. 

In a video, frames are associated with each other and have 

temporal information (i.e., features of continuous sequences of 

frames) that can be useful for interpreting a video semantically. 

Spatio-temporal structured prediction can prove useful in both 

supervised and semi-supervised manner. Table 9 shows Spatio- 

Temporal based network models for semantic segmentation. 

Several methods are proposed in the combination of Recur- 

rent Neural Networks (RNN) and Convolutional Neural Net- 

work (CNN) for video segmentation. Fayyaz et al. [145] pre- 

sented a full convolutional network Spatio-Temporal Fully Con- 

volutional Network (STFCN) employing spatial and temporal 

features. They proposed spatio-temporal module that takes the 

advantage of LSTM in order to define temporal features. The 

spatial feature maps of the region in single frame fed into LSTM, 

infers a relation with spatial features of equivalent regions in 

frames before that frame. Further, spatial and temporal infor- 

mation fed into dilated convolution network ([98] with minor 

modifications) for upsampling and are fused (summing opera- 

tion) for semantic predictions. He et al. [146] proposed Spatio- 

temporal data-driven pooling model (STD2P), which is method 

to integrate multi-view information by using super pixels and 

optical flow. The goal of multi-view semantic segmentation is 

to make use of the potentially richer information from differ- 

ent views with better segmentations than single view. Qiu et al. 

[148] proposed 2D/3D FCNs based architectural model named 
deep spatio-temporal ful-ly convolutional networks (DST-FCN), 

that utilizes spatial and temporal dependencies among pixels 

and voxels. The proposed architecture is a two stream network, 

Sequential frame stream, (2DFCN for spatial and ConvLSTM 

for temporal information), and clip stream, (3DFCN based on 

C3D [152] developed on voxel level). Pavel et al. [153] present 

a recurrent convolutional neural network model utilizing spatial 

and temporal information for processing image sequences. Yur- 

dakul et al. [154] proposed a network that combines color and 

depth information in RGBD videos for semantic segmentation 

using convolutional and recurrent neural network frameworks. 

Some architectures are based on Gated Recurrent Architec- 

tures to overcome gradients problem. Ballas et al. [155] used 

a term percepts (visual representations extracted from differ- 

ent levels of DCN) to capture spatial-temporal feature informa- 

tion in the video using gated-recurrent-unit recurrent networks. 

Siam et al. [149] present a fully convolutional network based on 

gated recurrent architecture (RFCN). Three different architec- 

tures were used following two approaches, conventional recur- 

rent units (RFCLeNet) and convolutional recurrent units (RFC 

VGG, RFC Dilated), learning spatio-temporal features with less 
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number of parameters. Nilsson et al. [151] present Gated 

Re- current Flow Propagation network. They proposed 

Spatio Tem- poral Transformer Gated Recurrent Unit 

(STGRU), combining the strength of spatial transformer 

(for optical flow warping) with convolutional gated 

architecture (to adaptively propagate and fuse estimates). 

Shelhamer et al. [144] proposed a net- work named 

Clockworks, which is a combination of FCN and 

clockwork recurrent network [156], grouping the layers of 

the network into stages with different rates (either fixed 

clock rate or adaptive clock) and then fusing them via 

skip connections. Saleh et al. [150] proposed a weakly 

supervised framework for video semantic segmentation 

that treats both foreground and background classes 

equally. The basic idea is to manage multiple foreground 

objects and multiple background objects equally. They 

propose an approach to extract class-specific heatmaps 

from classifier that localizes the different classes for both 

without pixel level or bounding box annotations. Kundu 

et al. [147] proposed a model to optimize the feature 

space used by the fully connected conditional random field 

for spatio- temporal regularization. Chandra et al. [157] 

proposed a Video Gaussian Conditional Random Field 

approach for spatio-temporal structured prediction, which is 

an extension of [158]. The FCN network obtains unary 

(class score per-pixel), spatial pairwise and temporal 

pairwise terms, which are fed into G-CRF mod- ule that 

performs inference (linear system) to obtain the final 

prediction. 

 

 Methods using CRF / MRF: 

Semantic segmentation involves pixelwise classification 

and such pixelwise classification often produces 

unsatisfactory re- sults (poor, incorrect and noisy 

predictions) that are irreconcil- able with the actual visual 

features of the image [159]. 

Markov random field (MRF) and its variant Conditional 

Ran- dom Fields are classical frameworks that are 

widely used to overcome these issues. They express both 

unary term (per-pixel confidence of assigning labels) and 

pairwise terms (constraints between adjacent pixels). 

CNNs can be trained to model unary and pairwise 

potentials in order to capture contextual infor- mation. 

The context provides important information for scene 

understanding tasks such as spatial context which 

provides se- mantic compatibility/incompatibility relation 

between objects, scenes and situations. CRFs can be a 

post processing or end- to-end, to smooth and refine the 

pixel prediction in semantic segmentation. They combine 

class scores from classifiers with the information captured 

by the local interactions of pixels and edges or 

superpixels. Table 10 shows network models using 

CRF. 

Krahenbuhl et al. [160] proposed a fully connected CRF 

(DenseCRF) model, in which pairwise edge potentials 

are de- fined by a linear combination of Gaussian kernels. 

The method is based on mean field approximation, message 

passing is per- formed using Gaussian filtering techniques 

[161]. Methods [79, 97, 123, 135, 129, 139, 133, 150] coupled 

fully connected CRF with their proposed DCNNs to produce 

accurate predictions and detailed segmentation maps for 

improving performance. Zheng et al. [162] formulate mean-

field inference algorithm for the dense CRF with Gaussian 

filtering technique as recurrent 
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Table 9: Spatio-Temporal based Methods 

 

Category Strategy / Structure  Corpus 
Original 

Architecture 

Testing 

Benchmark 

Published 

on 

Code 

Available 

 

. 
Clockwork 

FCN [144] 

 Clockworks: clock signals that 

control the learning of different 

layers with different rates 

FCN 

Clockwork RN 

Youtube-Objects, 

NYUD, 

Cityscapes 

 

August 11, 2016 

 

YES 

  

Spatio-Temporal 

FCN [145] 

 Spatial-Temporal Module 

embedding into FCN LSTM to 

define relationships between 

image frames 

 
FCN 

 

Camvid 

NYUDv2 

 
September 2, 2016 

 
YES 

 Spatio-Temporal 

Data-Driven Pooling 

(STD2P) [146] 

 Incorporate superpixels and 

multi-view information 

into convolutional networks 

 

FCN 
NYUDv2 

SUN 3D 

 

April 26, 2017 
 

- 

 Feature Space 

Optimization 

(FSO) [147] 

 Optimize the mapping of pixels 

to a Euclidean feature space used 

by DenseCRF for spatio-temporal 

regularization 

 

VGG 

Dilation 

 

CityScapes, 

Camvid 

 
December 12, 2016 

 
YES 

 Deep Spatio-Temporal 

FCN (DST-FCN) [148] 

 Learn spatial-temporal 

dependencies through 2D FCN 

on pixels and 3D FCN on voxels 

VGG 

C3D 

A2D, 

CamVid 

 

October 5, 2017 

 

- 

Spatio- 

Temporal 
 

Gated Recurrent 

FCN [149] 

 Implementation of three gated 

recurrent architectures 

RFC-LeNet: Conventional Recurrent 

Units. 

RFC-VGG and RFC-Dilated: 

Convolutional Recurrent Units. 

 

 
FCN 

 

SegTrack V2, 

Davis, 

Cityscapes, 

SYNTHIA 

 

 
November 21, 2016 

 

 
- 

  

 
 

WSBF[150] 

  

Weakly-Supervised Two-stream 

Network. 

One stream takes image, and other 

optical flow to extract the 

features. 

RFC-VGG and RFC-Dilated: 

Convolutional Recurrent Units. 

 

 

 
VGG 

 

 
Cityscapes, 

CamVid, 

YouTube-Objects 

 

 

 
August 15, 2017 

 

 

 
- 

  

Gated Recurrent 

Flow Propagation 

(GRFP) [151] 

 Spatio-Temporal Transformer 

Gated Recurrent Unit (STGRU) 

Combining spatial transformer 

with convolutional-gated 

architecture. 

 
Dilation 

LRR 

 
CityScapes, 

Camvid 

 

October 2, 2017 

 

- 

 

neural network (CRF-RNN), that performs CRF-based proba- 

bilistic graphical modelling for structured prediction. Figure 

14 shows CRF as RNN. 
 

Figure 14: CRF as a recurrent Neural Network [162] 

 

Vemulapalli et al. [163] proposed a model named Gaus- 

sian Mean Field (GMF) network that models unary potentials, 

pairwise potentials and Gaussian CRF inference for the task 

of semantic segmentation. In the proposed network, output of 

each of the layer is closer to maximum a posteriori probabil- 

ity (MAP) estimated to its input. Chandra et al. [158] pro- 

posed a Gaussian Conditional Random Field (G-CRF) mod- 
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ule using a quadratic energy function that captures unary 

and pairwise interactions. Lin et al. [169] propose a 

model Con- text CNN CRF jointly learning CNN and 

CRFs. They formu- late CRF with CNN pairwise 

potential to capture contextual relationship between 

neighboring patches and sliding pyramid pooling (multi-

scale image network input) for capturing patch- 

background context that can be combined to improve the 

seg- mentation.   Instead of learning the potentials, 

[168] proposes a method that learns CNN message 

estimators for the mes- sage passing inference for 

structured Conditional Random Field (CRFs) predictions. 

Teichmann et al. [164] proposed convolu- tional CRFs 

(ConvCRFs) method that reformulates the message 

passing inference in terms of convolutions. 

Some methods employed higher-order potentials 

(based on object detection or superpixels) modelled as 

CNN layers when using mean field inference and 

effective in improving seman- tic segmentation 

performance. Arnab et al. [165] proposed a method in 

which CRF models unary and pairwise potentials 

together with high-order potentials object detector (to 

provide semantic cues for segmentation) and superpixel 

(having label consistency over regions) in an end-to-end 

trainable CNN. Shen et al.[166] proposed joint FCN and 

CRF model (SegModel) that integrates segmentation 

specified features, which consti- tutes high order context 

and boundary guidance (bilateral-filtering based CRF) for 

semantic segmentation. Liu et al. [167] pro- posed Deep 

Parsing Network (DPN), which models unary term and 

pairwise terms (i.e., high-order relations and mixture of la- 
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Table 10: Methods using CRF/MRF 

 

Category Strategy / Structure Corpus  
Original  Testing 

Architecture Benchmark 
Published on 

Code 

Available 

  
Fully Connected-CRF 

(DenseCRF) [160] 

Based on mean field 

approximation, message 

passing performed using ResNet PASCAL VOC May 15, 2018 Yes 

Gaussian filtering 

techniques [161]. 

  

 
CRF-RNN [162] 

Multiple Mean-field 

Iterations. 

Interpretation of dense 
FCN 

PASCAL VOC 
April 13, 2016 - 

CRFs as Recurrent Neural   Cityscapes 

Networks (CRF-RNN) 

combined with CNN. 

 Gaussian 

Conditional 

Random Field 

(GCRF) 

Gaussian Mean Field 

(GMF) 

Network [163] 

GMF Network: Performing 

Gaussian mean field DeepLab 
PASCAL VOC 

June 26, 2016 Yes 

inference.   
ImageNet

 

 Quadratic 

Optimization 

(QO) [158] 

Quadratic Optimization FCN PASCAL VOC November 29, 2016 - 
(QO) module 

 
Convolutional-CRF 

(ConvCRF) [164] 
Inference in terms of ResNet PASCAL VOC May 15, 2018 Yes 
convolutions. 

 

CRFs / 
MRFs 

 

 
Incorporating 

Higher 

Order 

potentials 

 

Higher-order 

CRF [165] 

Object-detection based 

potentials: Provide Semantic 

cues for segmentation. 
CRF-RNN 

PASCAL VOC, 
July 29, 2016 - 

Superpixel-based potentials:   Context 

Encourage label consistency 

over regions. 

Structured Patch 

Prediction 

(SegModel) [166] 

 

  Integrate segmentation PASCAL VOC 

specified features, FCN Cityscapes November 9, 2017 - 

high order context and   ADE20K 

boundary guidance. 

 

Deep Parsing Network 

(DPN) [167] 

 
Models Unary term 

VGG PASCAL VOC  September 24, 2015 - 
and Pairwise terms 

in single CNN. 

  
. 

 
Learning Messages [168] 

 
CNN message estimators 

VGG-16 PASCAL VOC September 8, 2015 - 
for the message passing 

inference. 

  
Adelaide 

Bounding 

-box 

Detection 

Adelaide Very Deep 

FCN [136] 

Hough transform based 
approach 

FCRN PASCAL VOC May 23, 2016 - 
Online bootstrapping 
method for training. 

   

 
Context CNN CRF [169] 

Patch-patch context: 
Formulate CRFs to capture PASCAL VOC 

contextual relationship 
VGG-16  

NYUDv2 
June 6, 2016 - 

between neighboring patches  Pascal Context 

Patch-background context: Siftflow 

Sliding Pyramid Pooling. 

  
incorporate 

the depth 

information 

Depth-sensitive 

fully-connected 

Conditional Random Field 

(DFCN-DCRF [170] 

. 

 
Fully-connected CRFs with 

RGB information and FCN SUN-RGBD October 4, 2017 - 

depth information. 
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bel contexts) in single CNN that achieve high performance by 

extending the VGG network, and adding some layers for mod- 

eling pairwise terms. Jiang et al. [170] utilize the depth infor- 

mation as complementary information into conditional random 

fields. They proposed depth sensitive fully connected condi- 

tional random field combined with a fully convolutional net- 

work, (DFCN-DCRF). The basic idea is to add the depth infor- 

mation into dilated-FCN and fully connected CRF to improve 

accuracy for semantic segmentation. 

 

CRF inference with deep convolutional neural network improves 

pixel-level label predictions by producing sharp boundaries and 

dense segmentation. Several methods learn arbitrary potentials 

in CRFs. It has been used as post processing, end-to-end fash- 

ion, formulated as RNN and incorporated as module in existing 

neural network. 

 

 Alternative to CRF: 

Integrating conditional random field into original architec- 

ture is a difficult task due to additional parameters and highly 

computational complexity at training. Moreover, the majority 

of CRFs uses hand constructed color-based affinities that may 

lead to spatial false predictions. Several methods have been 

proposed to overcome these issues and can be used as alternate 

to CRFs. Table 11 shows network models alternate to CRFs. 

Bertasius et al. [173] proposed a FCN architecture named 

Boundary Neural Field (BNF) to predict semantic boundaries 

and produce semantic segmentation maps using global opti- 

mization. The BNF combines the unary potentials (prediction 

by FCN) and pairwise potentials (boundary-based pixel affini- 

ties) from the input RGB image in a global manner. The basic 

idea is to assign pixels to the foreground and background labels 

for each of the different object classes and apply constraint re- 

laxation. Later in [176], they proposed Convolutional Random 

Walk Network (RWN) addressing same issue, model based on 

random walk method [177]. The network model predicts se- 

mantic segmentation potentials and pixel level affinities, and 

combines them through proposed random walk layer that ap- 

plies spatial smoothing predictions. 

Jampani et al. [171] propose a network based on Gaussian 

bilateral filter [178], named bilateral neural network (BNN). Bi- 

lateral filter inference in fully connected CRF [160] (by replac- 

ing Gaussian potentials with bilateral convolution) to learn pair- 

wise potentials of fully connected CRF. Barron et al. [172] pro- 

pose edge-aware smoothness algorithm using bilateral filtering 

technique name the bilateral solver. Peng et al. [175] proposed 

a residual-based boundary refinement model, Global Convolu- 

tional network (GCN), for semantic segmentation. They pro- 

posed boundary refinement block (FCN structure without fully 

connected and global pooling layers) to model the boundary 

alignment as a residual structure. Chen et al. [174] proposed 

a model with domain transform (DT) module as a substitute to 

CRF, an edge preserving filtering method. The model consists 

of three modules. The first module produces semantic segmen- 

tation score prediction based on DeepLab. The second module 

named Edge Net, predicts edge features from midway layers 

and the third module is an edge-preserving filter named Do- 

main Transform (recursive filtering), proposed in [179]. 

 

Several methods have been proposed that can be used as al- 

ternative to CRF with the advantage of fast and less number of 

parameters. Bilateral filtering techniques can be useful tool in 

the construction of deep learning frameworks. 

 

Figure 15 gives an overview to the readers to have good under- 

standing of the categorization of different methods for semantic 

segmentation. 

 
3. Datasets and Evaluation for Deep Learning techniques 

One of the hardest problem for any segmentation systems 

based on deep learning techniques is the collection of data in or- 

der to construct suitable dataset. There are four possible ways 

to get labeled data as shown in Figure 16. Traditional Super- 

vision: hand label data; Weak supervision: obtained automat- 

ically without human annotators using unlabeled data; Semi- 

supervised learning: partially labeled and partially unlabeled 

data, and transfer learning: using pre-trained model as a start 

point. 

 

 
Figure 16: Getting Label Data 

 

 
 Datasets: 

The dataset acts as the benchmark against which deep learn- 

ing networks are trained and tested. Several datasets has been 

constructed over the last few years that are used in deep learn- 

ing, motivating researchers to create new models and strategies 

with better generalization abilities. 

These datasets can be categorized according to the nature of 

data. 

The automotive datasets includes; CamVid dataset [180] 

which is considered as the first with semantically annotated 

videos, Daimler Urban Segmentation [181], CityScapes [182], 

Mapillary Vistas [183] and the most recent Apolloscape-Scene 
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Figure 15: Illustration of the ten categories into which we have classified the reviewed semantic segmentation methods 
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× × 

Table 11: Alternative to CRF based Methods 

 

Category Strategy / Structure Corpus Original Architecture 
Testing 

Published on 
Code

 
Benchmark Available 

 

 

 

 

 

 

 

 

 
 

Alternative to 

CRF 

Approaches 

 

Bilateral Neural 

Network (BNN)[171] 

 
Fast Bilateral Solver 

(BS) [172] 

Boundary Neural 

Field 

(BNF) [173] 

 
DT-EdgeNet [174] 

 

 
Global Convolutional 

Network 

(GCN) [175] 

 
Random Walk 

Network 

(RWN) [176] 

 Bilateral filter inference in DenseCRF 
Replacing Gaussian potentials with 

DeepLab Pascal VOC June 26, 2016 Yes 
bilateral convolution to learn 

pairwise potentials . 

 Edge-aware smoothness algorithm 
CRF-RNN 

Pascal VOC 
July 22, 2016 - 

using bilateral filtering technique.  MS COCO 

 Build unary and pairwise potentials Semantic 

from input RGB image, then FCN Boundaries May 24, 2016 - 

combine them in global manner.   Dataset 

 Domain transform (DT) Module: 
Edge-preserving filter. 

DeepLab Pascal VOC December 12, 2016 - 
Edge Net: Predicts edge features 
from midway layers. 

 Large kernels used for 
classification and localization. 

FCN 
Cityscapes 

Boundary Refinement Block: Model 
ResNet 

COCO March 8, 2017 - 

the boundary alignment as a PASCAL VOC 
residual structure. 

 Pascal, 
Random Walk Network Pixel SBD-Stanford 

labeling framework 
DeepLab-largeFOV 

Background, 
July 22, 2017 - 

Sift Flow 

 

parsing [184] which focuses on semantic understanding of ur- 

ban street scenes. The KITTI [185] dataset used in various com- 

puter vision tasks such as 2D/3D object detection, stereo, opti- 

cal flow, and tracking. Synthetic datasets [186] [187] consist of 

a thousand images extracted from realistic open-world games. 

Data sets generic in nature; PASCAL VOC [188] is one 

of the most popular and widely used dataset in deep learn- 

ing semantic segmentation, CIFAR-10/100 [189] contains up 

to 60,000 images, offering 10 and 100 categories of tiny 32 32 

images. A remarkable ImageNet [190] dataset contains over 14 

million labeled images, SegTrack v2 [191] is a video segmenta- 

tion dataset with annotations on multiple objects at each frame, 

and PASCAL Context [192] is a set of additional annotations 

for PASCAL VOC. Microsoft-COCO [193] is a collection of 

images of complex everyday scenes contains common natural 

objects, ADE20K [194] containing both indoor and outdoor im- 

ages with large variations, and DAVIS [195] dataset containing 

densely annotated videos with pixel accurate ground truth. Re- 

cently developed COCO stuff [196] dataset augments the orig- 

inal COCO dataset with much more comprehensive stuff anno- 

tations. 

Indoor environment datasets; NYUDv2 [197] is composed 

of RGB-D images and video sequences from a variety of in- 

door scenes, Cornell RGB-D [198] contains labeled office and 

home scene point clouds, ScanNet [199] comprises more than 

1500 scenes annotated with 3D camera pose, surface recon- 

structions, and semantic segmentations. Stanford 2D-3D [200] 

contains mutually registered modalities from 2D/3D domains, 

with 71,882 RGB images (both regular and 360◦), along with 

the corresponding depths, surface normal and semantic annota- 

tions. SUN 3D [201] and SUN RGB-D [202] datasets contain 

videos of big spaces for place-centric scene understanding. 

Object datasets; RGB-D Object v2 [203] containing 25000 

images of common household objects in 51 categories, YouTube 

Dataset [204] comprises 126 videos. 

Datasets for outdoor environment; Microsoft Cambridge 

[205] consists of 591 real outdoor scene photographs of 21 

object classes; Graz-02 [206] is a natural-scene object cate- 

gory dataset created at INRIA. LabelMe [207] contains out- 

door images of 8 different classes that are taken in different 

cities of Spain; Barcelona dataset [208] is a subset of LabelMe; 

Stanford-background [209] and PASCAL SBD [210] are col- 

lected from PASCAL VOC; Sift-flow [211] consists of 2688 

images of 256    256 pixels and 33 classes, and Freiburg Forest 

[212] constitute on outdoor forest environment in different con- 

dition lighting, shadows and sun angles. 

 
The dataset construction is both time consuming and labor in- 

tensive, so for the researchers and developers the most practi- 

cal and workable approach is to use existing standard datasets 

which are representative enough for the domain of the problem. 

Some datasets have become standard and commonly used by 

researchers to compare their work with others using standard 

metric for evaluation. Dataset selection at a start of research is 

challenging task, therefore the comprehensive description on 

dataset can help. In Table 12, we list the datasets used by 

deep learning networks that are publicly available. Are given 

different information such as environment nature, the number 

of classes, training/testing samples, image resolution, year of 

construction, and best performances achieved till date (to the 

best of our knowledge) by the models for semantic segmenta- 

tion. [13, 198, 203] datasets are not accessed for semantics, but 

they can be used for semantic segmentation. [184, 199] datasets 

are not evaluated at all. All these datasets provide appropriate 

pixel-wise or point-wise labels. 

 
 Evaluation: 

We describe commonly used evaluation metrics for seman- tic 

segmentation. The overall performance of the semantic seg- mentation 

systems can be assessed in terms of accuracy, time, 
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Table 12: Summary of Datasets 

 

DataSet 
Environment 

Nature 

No of 

Classes 

Samples Image 

Resolution 
Year Performance 

Network 

Model Training Validation Test 

ADE20K [194]] Generic 150 20210 2000 - Variable 2016 44.98% MIoU PSPNet [112] 

Apolloscape Scene parsing [184] Street View / 2D-3D 25 146997 Frames 3384 × 2710 2018  

Barcelona [208] Outdoor 170 14871 - 279 640 × 480 2010 74.6% GL acc. DAG-RNN [69] 

CamVid [180] Street View 32 701 960 × 720 2009 69.94% MIoU FCCN [83] 

CIFAR-10/100 [189] Generic / Objects 10/100 50K/500 - 10K/100 32 × 32 2009 3.58% test error ResNeXt [41] 

Cityscapes [200] 
Fine 

Street View 30 
2975 

22973 

500 

500 

1525 

- 
2048 × 1024 2016 

      79.3% MIoU  

82.2% MIoU 

DeepLabV3 [100]  

DeepLabV3+ [101] Coarse 

Cornell RGB-D [198] 
Indoor 

Office/Home 
- 

24 Office / 28 Home Scenes 
Point Clouds 

Variable 2011 
 

COCO Stuff [196] Generic 172 163957 Variable 2018 38.9% MIoU DSSPN [43] 

DAVIS [195] Generic / Videos 4 4219 2023 2180 480p 2017 69.84% MIoU RFCNet [149] 

Data from Game [187] Synthetic / Street View 19 24966 1914 × 1052 2016  

Daimler Urban Segmentation [181] Street View / Video 5 500 1024 × 440 2013 77.2% MIoU 
Layered 

Interpretation [213] 

Freiburg Forest [212] 
Outdoor / 
Forest-Environment 

6 230 - 136 1024 × 768 2016 88.25% MIoU AdapNet [40] 

ImageNet [190] Generic 1 K 14,197,122 Variable 2010  

INRIA-Graz-02 [206] Outdoor /Natural 3 479 - 479 640 × 480 2007  

KITTI [185] Street View 10 140 - 112 1226 × 370 2015 63.51% MIoU LSDN [214] 

LabelMe [207] Outdoor 8 2920 - 1133 Variable 2008  

Mapillary Vistas [183] Street View 66 18000 2000 5000 1920 × 1080 2017 45.01% MIoU DSSPN [43] 

Microsoft COCO [193] Generic 80 82783 40504 81434 Variable 2014 56.9% AP FPN [57] 

Microsoft Cambridge [13] Outdoor 21 591 320 × 240 2005  

NYUDv2 [197] Indoor 40 795 654 - 480 × 640 2012 50.1% MIoU RDFNet [89] 
 VOC [188] Generic 20 1464 - 1449 Variable 2012       89.0% MIoU  

      51.6% MIoU  

82.1% MIoU 

DeepLabV3+ [101]  
CCL [115]  

DeepLabv2+RWN [164] 

PASCAL Generic 59 10103 - 9637 Variable 2014 
Context [192] 

 Outdoor 21 8498 - 2857 Variable 2011 
SBD [210] 

RGB-D Object v2 [203] 
Household / 
Warehouse Objects 

51 41877 640 × 480 2014 
 

ScanNetv2 [199] Indoor / 3D 20 +1500 scans Variable 2018  

SegTrack v2 [191] Generic / Videos 14 976 Frames Variable 2013 80.12% MIoU RFCNet [149] 

Sift-Flow [211] Outdoor 33 2488 - 200 256 × 256 2011 44.9% MIoU Context-cNN[169] 

Stanford 
Background [209] Outdoor 

Indoor / 2D-3D 

8 

13 

715 

70469 / 360◦ Scans 

320 × 240 

1080 × 1080 

2009 

2017 

      65.7% MIoU  

49.9% fwIoU 

MCRNN [66]  

Depth-CNN [215] 2D-3D [200] 

SUN Dataset 
3D [201] Indoor / 3D / Video 

Indoor / 2D-3D 

- 

37 2666 

19640 Frames 

2619 5050 

640 × 80 

Variable 

2013 

2015 

  58.5% IoU  

48.1% MIoU 

LSTM-CF [216]  

CCL [115] RGB-D [131] 

SYNTHIA [186] Synthetic / Street View 11 13407 960 × 720 2016 81.2% MIoU RFCNet [149] 

Youtube Dataset [204] Objects / Video 10 +10000 Frames / 126 Videos 480 × 360 2014 68.5% MIoU Clockwork-FCN [144] 

2
2
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y=1 

             Σ xy   xx 

x=1 y=1 y=1 y=1 

memory, and power consumption. 

Accuracy: 

The accuracy of the semantic segmentation system is mea- 

sure of the correctness of the segmentation or is the ratio of the 

correctly segmented area over the ground truth. 

Pixel wise Accuracy: The ratio between the amount of cor- 

rectly classified pixels and the total number of them. Confusion 

matrix terminology is used to describe the performance of a 

classification model. 

Let Ncls be the number of classes, Nxy is the number of pix- 

els which belong to class x and were labeled as class y. The 

confusion matrix reports the number of false positives (Nxy), 

false negatives (Nyx), true positives (Nxx), and true negatives 

(Nyy). 

ΣNcls Nxx
 

Mean Average Precision: Mean of all the Average Preci- 

sion values across all classes. 

 

Time, Memory and Power: 

The memory and processing time of the system is highly de- 

pendent on hardware and the back-end implementation. The us- 

age of hardware accelerators GPUs makes the processing time 

of these system very fast, however it consumes much of the 

memory and power. Most of the methods do not provide infor- 

mation, regarding time, memory and hardware, which is very 

crucial as these network models may be applied in (mobile 

systems, robotics, autonomous driving etc) where with limited 

power and memory, extremely accurate image segmentation would 

be required. Furthermore, these information can help researchers 

to estimate, make comparisons or choose methods depending 
on the application and requirement. 

PixelAccuracy = 
x=1

  
ΣNcls ΣNcls Nxy

 
(1) 

x=1  y=1 

The pixel-wise classification accuracy is not reliable for the real 

performance of a classifier, because it will yield misleading re- 

sults if the data set is unbalanced (i.e., large regions which have 

one class or labeled images could have a more coarse labeling). 

Mean Accuracy: The ratio of correct pixels is calculated 

in per-class basis and then averaged over the total number of 

classes Ncls. 

4. ANALYSIS & DISCUSSION 

We analyze some of the network models on the bases of 

their performance on datasets and their design structure to find 

out the reasons for their accomplishments. It is difficult to com- 

pare these methods due to the majority of them has been evalu- 

ated on very few datasets. Some methods used different metrics 

and also lack information about experimental setup (hardware, 

MeanAccuracy = 
  1  

ΣNcls  
      Nxx 

 (2) 
time, memory). 

Ncls 
x=1 ΣNcls Nxy

 

AdapNet [191]: 

Mean Intersection over Union (MIoU): The ratio between 

the numbers of true positives Nxx, (intersection) over the sum 

of true positives Nxx, false negatives Nyx, false positives Nxy 

(union). Intersection over Union is computed on a per-class ba- 

sis and then averaged. 

MIoU =  
  1  

ΣNcls
 Nxx  

(3) 
Ncls   

x=1 
ΣNcls Nxy + ΣNcls Nyx − Nxx 

Achieves top score of 88.25% IoU on Freiburg Forest and 

72.91% IoU on Synthia dataset. The network achieves 

the score of 69.39% IoU on cityscapes dataset. 

The improvement can be credited to the highly representational 

multi-scale features learned by the model, which enable the seg- 

mentation of very distant objects present in Synthia and Citys- 

capes. AdapNet model approach is based on a mixture of con- 
y=1 y=1 

volutional neural network (CNN) experts (Convoluted Mixture 
The most widely used accuracy measuring strategy is MIoU, 

due to its easiness and simplicity. 

Frequency Weighted Intersection over Union (FWIoU) 

of Deep Experts - CMoDE) and incorporates multiple modali- 

ties including appearance, depth and motion. 

 

PSPNet [112]: 

 
FWIoU = 

  1  

ΣNcls ΣNcls Nyx
 

Ncls N N 

ΣNcls y=1  

x=1 
ΣNcls Nxy + ΣNcls Nyx − Nxx 

 
(4) 

Achieves the best results on ADE20K with 44.8% IoU, 

promising results are obtained on cityscapes and Pascal 

 

Precision: The relation between true positives Nxx, and all 

elements classified as positives 
PSPNet developed an effective optimization strategy for deep 

ResNet-101 [34] based on deeply supervised loss; two loss func- 

 

Precision 
  Nxx  

= 
Nxx + Nxy 

(5) 

tions: main softmax loss to train the final classifier and auxil- 

iary loss applied after the fourth stage, this helps optimizing the 

learning process. PSPNet applies multi scale testing, experi- 

Recall: measures how good all the positives are found. 

Recall =
 Nxx 

 

Nxx + Nyx 

 

 
(6) 

ments different depths of pre-trained ResNet and data augmen- 

tation is performed. 

 
FCCN [83]: 

Average Precision: Mean precision at a set of eleven equal 

space recall levels (0.0, 0.1, 0.2 . . . , 1) 

Achieves a top scores of 69.94% IoU on CamVid and 

score of 44.23% IoU on ADE20K dataset. 

VOC with 80.2% IoU and 85.4% IoU respectively. 

• 

• 

• 
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FCCN proposed a cost function that significantly improves the 

segmentation performance, very few researchers tried to mod- 

ify cost function when training their models. FCCN calculates 

cost function on each pre output layer including the final output 

layer. 

 

DeepLab V3 [100]: 

• Achieves score of 81.3% IoU on cityscapes. 

Improvement mainly comes from changing hyper perimeter: 

Fine tuning batch normalization, varying batch size, larger crop 

size, changing output stride, multi scale inputs during inference, 

add-ing left-right flipped inputs, trained on 3475 finely and ex- 

tra 20000 coarsely annotated images of cityscapes dataset. Fur- 

thermore, the use of ResNet-101 model which is pre-trained on 

ImageNet and JFT dataset, results in the second best score of 

86.90 IoU on Pascal VOC. 

 
DeepLab V3+ [101]: 

Achieves 89.0% IoU on Pascal VOC and 82.1% IoU on 

cityscapes. 

DeepLab V3+ is a modified version of DeepLab V3, adapted 

to output stride = 16 or 8 instead of 32. It is also adapted to 

Xception module, which further increased the performance. 

 
DSSPN [43]: 

Achieves top scores on COCO Stuff 38.9% IoU, 43.6% 

IoU on ADE20K, 58.6% IoU on Pascal Context and 45.01% 

IoU on Mapillary dataset. 

DSSPN constructs a semantic neuron graph in which each neu- 

ron segments regions of one parent concept in a semantic con- 

cept hierarchy (combining labels from four datasets) and aims 

at recognizing between its child concepts. Instead of using 

a completely large semantic neural graph, DSSPN only acti- 

vates relative small neural graph for each image during training, 

which makes DSSPN memory and computation efficient. 

 

RFCNet [149]: 

Achieves top scores of 81.20% IoU on SYNTHIA, 80.12% 

IoU on SegTrack and 69.84% IoU on DAVIS dataset. 

The model uses different FCN architectures as a recurrent node 

to utilize temporal information, deconvolution layer for upsam- 

pling and supports skip architecture for finer segmentation. The 

use of temporal data is the reason for the boost of performance 

not just simply adding extra convolutional filters. 

 

Adelaide Context CNN-CRF [169]: 

Achieves score of 40.6% IoU on NYUDv2, 42.30% IoU 

on SUN-RGB, 78.00% IoU on Pascal VOC, 66.40% IoU 

on CIFAR-100, 71.60% IoU on Cityscapes, and 43.30% 

IoU on Pascal Context dataset. 

The model uses CNN-based pairwise potential functions to cap- 

ture semantic correlations between neighboring patches which 

improve the coarse-level prediction. The model applies FCN 

with sliding pyramid pooling, CNN contextual pairwise, bound- 

ary refinement (dense CRF method), and trained model with ex- 

tra images from the COCO dataset to improve the overall per- 

formance of the model. 

 

Clockwork-FCN [144]: 

Achieves 68.50% IoU on Youtube Object, 68.40% IoU 

on Cityscapes, 28.90% IoU on NYUDv2 dataset. 

The Clockwork-FCN uses different clock schedules; Fixed-rate 

clock reduces computation by assigning different rates to each 

stage such that later stages execute less often. Adaptive clock- 

work updates when the output score maps is predicted to change, 

thus reducing computation while maintaining accuracy. 

 
Residual framework ResNet-38 [38]: 

Achieves the highest score of 48.1% IoU on Pascal Con- 

text, 80.6% IoU on cityscapes and 43.43% IoU on ADE20K. 

The model introduces residual units into ResNet (17 residual 

units for 101 layers ResNet) expanding it into a sufficiently 

large number of sub-networks. Each connection in residual 

unit shares same kernel sizes and numbers of channels, this re- 

sults in improving model accuracy. ResNet-38 does not apply 

any multi-scale testing, model averaging or CRF based post- 

processing, except for the test set of ADE20K. 

 

ESPNet: [47]: 

Efficient real-time segmentation network, achieves 60.2% 

IoU on cityscape, 40.0% IoU on Mapillary dataset with 

0.364M parameters, 63.01% IoU on Pascal VOC test set 

with 0.364M parameters. 

Efficient Spatial Pyramid (ESP) network is an efficient neural 

network in terms of speed and memory. ESP, based on factor- 

ized form of convolutions (point-wise convolution and spatial 

pyramid of dilated convolutions), reduces the number of pa- 

rameters, memory, with large receptive field. 

 

FCN-8s [77]: 

Achieves the score of 77.46% IoU on Freiburg Forest, 

67.20% IoU on PASCAL VOC, 65.30% IoU on CIFAR- 

10, 65.30% IoU on Cityscapes, 56.10% IoU on KITTI, 

29.39% IoU on ADE20K, 35.10% IoU on PASCAL CON- 

TEXT, 65.24% IoU on SYNTHIA, and 57.00% IoU on 

CamVid dataset. 

The performance is increased by transferring pre-trained classi- 

fier weights, fusing different layer representations, and learning 

end-to-end on whole images. 

 
DAG-RNN [72]: 

• 

• 

• 

• 

• 

• 

• 

• 
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× 

Achieves 44.8% IoU on Sift-flow, 31.2% IoU on COCO 

stuff (171 classes) and 43.7% IoU on PASCAL Context 

dataset. 

Segmentation network uses a pre-trained CNN with DAG-RNN, 

fusing low-level features with DAG-RNN. A new class weighted 

loss function proposed to control the classwise loss during train- 

ing. The performance of segmentation network increases with 

increase in DAGs with DAG-RNN. Fully connected CRF is 

used, which further improves the performance of the network. 

 

RefineNet [88]: 

Achieves a score of 45.90% IoU on SUN-RGB, 46.50% 

IoU on NYUDv2 and 47.30% IoU on Pascal Context 

datasets. The results on Pascal VOC, cityscapes, and 

ADE20K datasets are 83.40% IoU, 73.60% IoU, and 40.70 

% IoU respectively. 

RefineNet applies data augmentation during training (random 

scaling, cropping and horizontal flipping of image), and multi- 

scale evaluation (average the predictions on the same image 

across different scales for the final prediction). Dense CRF 

method is used only for Pascal VOC. 

 
Dilation10 [98]: 

Achieves 67.60% IoU on PASCAL VOC, 67.10% IoU on 

Cityscapes, 32.31% IoU on ADE20K and 65.29% IoU on 

CamVid dataset. 

The model is an adapted version of [69], replacing the pool- 

ing and convolutional layers of conv4/conv5 with two dilated 

convolution layers with dilation factors of 2 and 4 respectively. 

This leads to a decrease in the size of the network and its run- 

ning time for real-time applications. 

 
ResNet DUC+HDC [103]: 

Achieves a score of 80.10% IoU on Cityscapes, 83.10% 

IoU on PASCAL VOC, 39.40% IoU on ADE20K dataset. 

DUC provides the dense pixel-wise predictions, HDC uses ar- 

bitrary dilation rates which enlarge the receptive fields of the 

network. ResNet with different depths are experimented, data 

augmentation is performed (for cityscapes, each image of the 

training set is partitioned into twelve 800 800 patches mak- 

ing 35700 images). The model is trained using the combination 

of MS-COCO dataset, augmented PASCAL VOC 2012 train- 

ing and trainval sets. ResNet DUC+HDC is also evaluated on 

KITTI dataset achieving the average precision of 92.88% for 

road segmentation using ResNet 101-DUC model, pre-trained 

from ImageNet during training. 

 

ST-Dilation [145]: 

Achieves the score of 65.90% IoU on CamVid dataset. 

Model ST-FCN32s scores 50.60% IoU on Camvid dataset 

and Model ST-FCN8s scores 30.90% IoU on NYUDv2 

dataset. 

In STFCN model, no post processing required, the spatial tem- 

poral module is embedded on top of the final convolutional 

layer. LSTM blocks are used for inferring the relations between 

spatial features that provide valuable information and improve 

the accuracy of the segmentation. Furthermore, applying di- 

lated convolutions for multi-scale contextual information arch- 

ives better results. 

 

STGRU (GRFP + Dilation) [151]: 

Achieves the score of 66.10 IoU on CamVid dataset. Model 

GRFP + Dilation scores 67.80% IoU and model GRFP + 
LRR-4x achieves the score of 72.80% IoU on Cityscapes 

dataset. 

The model combines the power of both convolutional-gated ar- 

chitecture and spatial transformers (CNN). The model GRFP is 

trained with Dilation 10 [88] and LRR [70] network that im- 

prove performance for video. The model improves semantic 

video segmentation and labeling accuracy by propagating infor- 

mation from labeled video frames to nearby unlabeled frames 

with slight computation. 

 

It can be noticed, that those methods which achieved the high 

performance results, are doing so due to the availability of large 

amount of labeled data. Extra training data is beneficial for in- 

creasing the accuracy of the model; several models used large 

datasets (merging two or three datasets) during training. 

 
5. OPEN PROBLEMS AND CHALLENGES 

In this section, we discuss some of the open problems and 

their possible solutions. 

 

 Open Problems and Possible Solutions 

Techniques for semantic segmentation using deep neural 

networks (DNNs) are rapidly growing and the following prob- 

lems are still needed to be addressed. 

1. Reducing Complexity & Computation: 

The deep neural networks are not much suitable to be de- 

ployed on mobile platforms (e.g. embedded devices) that 

have limited resources because, DNN are highly memory 

demanding, time and power consuming. There is also 

problem with computational complexity that arises due 

to a great number of operations needed for inference. It is 

important to investigate how to reduce the complexity of 

the model to achieve high efficiency without loss of ac- 

curacy. Some CNN compression approaches have been 

proposed to deal with reducing complexity and compu- 

tational cost. Wang et al. [217] proposed a method to 

excavate and decrease the redundancy in feature maps 

extracted from large number of filters in each layer of 

network. Kim et al. [218] proposed a one-shot whole net- 

work compression approach, that consists of three steps: 

Rank selection, Low-rank tensor decomposition, and fine 

tuning. Andrew et al. [219] applied model compres- 

sion techniques to the problem of semantic segmentation. 

• 

• 

• 

• 

• 

• 
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Caffe2 is a portable deep learning framework by Face- 

book, capable of training large models and allows to build 

machine learning applications for mobile systems. Com- 

pressing and accelerating DNN achieved lots of progress. 

However, there are some potential issues like; compres- 

sion may cause loss in accuracy; decomposition opera- 

tion; transfer information to convolutional filters is not 

suitable on some networks. 

 
2. Apply to Adverse Conditions: 

There have been a few of network models which are ap- 

plied in real challenging environmental conditions or to 

handle adverse conditions such as direct lighting, reflec- 

tions from specular surfaces, varying seasons, fog or rain. 

Although, some CNN models used synthetic data together 

with real data to boost the performance of state-of-the-art 

methods for semantic segmentation on the challenging 

environmental conditions. However, using huge amounts 

of high-quality data from the real world so far remains 

indispensable. One possible solution is to use synthetic 

data with the real data. Apparently there are significant 

visual differences between the two data domains and to 

narrow this gap, domain adaptation technique may be 

used. Hoffman et al. [220] proposed an unsupervised 

domain adaptation method for transferring semantic seg- 

mentation FCNs across image domains. Yang et al. [221] 

proposed a curriculum-style learning approach to min- 

imize the domain gap. The authors in [222] proposed 

a domain Shift approach based on Generative Adversar- 

ial Network (GAN), which transfers the information of 

the target distribution to the learned embedding using a 

generator-discriminator pair. 

 
3. Need large and high quality labeled data: 

The classification performance of DNNs and dataset size 

are positively correlated. Current state-of-the-art meth- 

ods require high quality labeled data, which is not avail- 

able on large-scale as they are time consuming and labour 

exhaustive. The effective solution to this problem would 

be to build large and high quality datasets, which seems 

hard to achieve. Therefore, the researchers rely on semi 

and weakly supervised methods making DNNs less re- 

liant on the labeling of large datasets. These methods has 

considerably improved the semantic segmentation per- 

formance by using additional weak annotations either alone 

or in combination with a small number of strong annota- 

tions. However, they are far from fully supervised learn- 

ing methods in terms of accuracy. Thus, this opens new 

challenges for improvement. 

 

4. Overfitting: 

As mentioned before, DNNs are data hungry and they do 

not perform well unless they are fed with large datasets. 

Majority of the available datasets are relatively small, so 

as DNN models become very complex to capture all the 

useful information necessary to solve a problem. The 

model may run risk of ”Overfitting” with limited amount 

of data. Overfitting occurs when the gap between the 

training error and test error is too large. Regularization 

techniques help in overcoming this problem. Regular- 

ization is any modification we make to a learning algo- 

rithm that is intended to reduce its generalization error 

but not its training error [60]. Several of these methods 

are applied in DNNs to prevent overfitting such as L1 

and L2 regularization, Lp norm, dropout, dropConnect. 

Data Augmentation is also used to reduce overfitting (e.g. 

increasing the size of the training data - image rotating, 

flipping, scaling, shifting). However, the regularization 

may increase training time (e.g. using dropout increases 

the training time by 2x or 3x than a standard neural net- 

work of the same architecture) and there is no standard 

for regularizing CNNs. Introducing better or improved 

regularization method would be an interesting direction 

for future work. 

 

5. Segmentation in Real-time: 

Real-time semantic segmentation without loosing to much 

accuracy is of great importance, as it can be useful in au- 

tonomous driving, robot interaction, mobile computing 

where running time is critical to evaluate the performance 

of the system. DNN methods for semantic segmentation 

are more focused on accuracy then speed. Majority of 

the methods are far away from real-time segmentation. 

One possible solution to the problem could be performing 

convolutions in an efficient manner. Several works have 

aimed at developing efficient architectures that can run 

in real-time based on convolution factorization (disinte- 

grate convolutional operation into multiple steps). Some 

computationally efficient modules for convolution are in- 

troduced. For example, Inception [27], Xception [31], 

ResNet [34], ASP [99], ESP [47]; ShuffleNet [223] and 

MobileNet [224], are using grouped and depth-wise con- 

volutions. Another possible solution could be to apply 

network compression using different techniques (e.g. pa- 

rameter pruning and sharing [225], low-rank factoriza- 

tion and sparsity [226] etc) to reduce the size of the net- 

work. However, real-time semantic segmentation still 

lacks higher accuracy and new methods and approaches 

must be developed to work-out between runtime and ac- 

curacy. 

 

6. Video / 3D Segmentation: 

DNNs have been successfully applied for semantic seg- 

mentation of 2D images while not much for 3D images 

and on videos despite their significance. Several video 

and 3D network models for semantic segmentation have 

been proposed over the years and progress has been made 

but some challenges still exist. The lack of large datasets 

of 3D images and sequence images (videos) make it diffi- 
cult to progress on 3D and video semantic segmentation. 

3D networks are computationally expensive when deal- 

ing with high resolution and complex scenes (large num- 

ber of classes). In 3D semantic segmentation task, using 

3D Point cloud information is very effective. Zhang et al. 
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[227] proposed an efficient large-scale point cloud seg- 

mentation method, in which 2D images with 3D point 

clouds are fused into CNN to segment complex 3D ur- 

ban scenes. The authors in [228, 229] proposed meth- 

ods for direct semantic labeling of 3D pointclouds with 

spectral information. However, 3D segmentation meth- 

ods face many challenges as compared to 2D segmenta- 

tion, i.e., High complexity, computational cost, slow pro- 

cessing and most important lack of 3D datasets. In video 

semantic segmentation, two approaches can be useful, 

one to improve computational cost (by reducing latency); 

The authors in [144, 230] proposed designed schedule 

frameworks which reduce the overall cost and maximum 

latency of video semantic segmentation. However, these 

approaches are far away to meet the latency requirements 

in real-time applications. The second approach is to im- 

prove accuracy (by exploiting temporal continuity - tem- 

poral features and temporal correlations between video 

frames). Several methods [145, 146, 148] have been pro- 

posed using temporal information with spatial informa- 

tion for increasing the accuracy of pixel labeling. 

 
6. CONCLUSIONS 

In this paper, we have provided a comprehensive survey of 

deep learning techniques used for semantic segmentation. 

The surveyed methods have been categorized in ten classes, 

according to the common concept underlaying their architec- 

tures. We have also provided a summary of these methods stat- 

ing, for each of them, the main idea, the origin of its archi- 

tecture, testing benchmarks, code availability and the year of 

publication. 

Thirty five datasets on which these methods have been ap- 

plied, have been reported and described in details showing their 

environment nature, number of classes , resolution, number of 

the images and the method which achieved the best perfor- 

mance on each till date to the best of our knowledge. 

We have mainly analyzed the design and performance of 

some of these methods which reported that had achieved high 

scores. The goal was to find out how they do so. 

We have also discussed some of the open problems and tried 

to suggest some of possible solutions. 

This survey had shown that there is much scope of improve- 

ment in terms of accuracy, speed and complexity. So, our fu- 

ture work, would be to take some of these methods and develop 

a new one by enhancement of the weaknesses and/or combina- 

tion of the merits. 
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